Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:
Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 87)
Đề bài: Bạn An kinh doanh hai mặt hàng handmade là vòng tay và vòng đeo cổ. Mỗi vòng tay làm trong 4 giờ, bán được 40 ngàn đồng. Mỗi vòng đeo cổ làm trong 6 giờ, bán được 80 ngàn đồng. Mỗi tuần bạn An bán được không quá 15 vòng tay và 4 vòng đeo cổ. Tính số giờ tối thiểu trong tuần An cần dùng để bán được ít nhất 400 ngàn đồng?
Lời giải:
Làm vòng tay mỗi giờ được 10 ngàn đồng
Làm vòng đeo cổ mỗi giờ được: 40 : 3 ≈ 13 ngàn đồng
Vậy làm vòng đeo cổ có lợi hơn nên ưu tiên làm tối đa số vòng cổ trước.
Làm 4 vòng đeo cổ hết 4.6 = 24 giờ, bán được 4.80 = 320 ngàn đồng.
Để làm được ít nhất 400 ngàn đồng cần làm thêm vòng tay để thu về 80 ngàn đồng hay cần làm thêm 2 cái vòng tay
⇒ Cần thêm 2.4 = 8 giờ
Vậy cần tối thiểu: 24 + 8 = 32 giờ một tuần để An bán được ít nhất 400 ngàn đồng.
Xem thêm các bài tập thường gặp môn Toán hay, chọn lọc khác:
Đề bài: Tính giá trị biểu thức: .
Đề bài: Chứng minh rằng n(n + 13) chia hết cho 2 với mọi số tự nhiên n.
Đề bài: Chứng minh với mọi tam giác ABC ta có:
cos2A + cos2B + cos2C = –1 – 4cosA.cosB.cosC.
Đề bài: Cho biểu thức B = . Tìm các số nguyên a để B nhận giá trị nguyên.
Đề bài: Điền số thích hợp vào chỗ chấm
Đề bài: Không thực hiện tính tổng, chứng minh rằng A = 2 + 22 + 23 + … + 220 chia hết cho 5.
Đề bài: Rút gọn: M = sin(x – y)cosy + cos(x – y)siny.
Đề bài: Cho hình vẽ. Chứng minh rằng:
Đề bài: Tìm tập giá trị T của hàm số y = sin2x.
Đề bài: Cho tam giác ABC. Xác định điểm I sao cho vectơ .
Đề bài: Cho 2 đường thẳng d1: y = 4x + m – 1, d2: y = x + 15 – 3m.
Đề bài: Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.
Đề bài: Cho a, b, c là 3 cạnh của 1 tam giác.
Đề bài: Tìm các số nguyên dương x, y, z thỏa mãn x + y + z = xyz.
Đề bài: Tìm m để phương trình x2 + mx + m – 1 = 0 có hai nghiệm lớn hơn m.
Đề bài: Quan sát hình vẽ sau. Giải thích vì sao m song song với n?
Đề bài: Cho hình thang ABCD (AD // BC) có .
Đề bài: Tìm số nguyên tố p sao cho 2p + 1 chia hết cho p.
Đề bài: Tìm các số tự nhiên x sao cho 14 chia hết cho 2x + 1.
Đề bài: Cho A = 2 + 22 + 23 + … + 260. Hãy thu gọn tổng A.
Đề bài. Cho hai tập hợp khác rỗng A = [ m – 1; 5) và B =[–3; 2m + 1]. Tìm m để A ⊂ B.
Đề bài. Cho tổng A = 8 + 12 + x với x thuộc ℕ. Tìm x để:
Đề bài. Điền chữ số thích hợp vào dấu * để được số M = thỏa mãn điều kiện:
Đề bài. Cho phương trình: x2 – 2mx + m2 – 4 = 0.
Đề bài. Biến đổi tổng thành tích A = sina + sinb + sin(a + b).
Đề bài. Cho số tự nhiên bằng ba lần tích các chữ số của nó.
Đề bài. Cho tam giác ABC nhọn (AB < AC) có các đường cao BD và CE.
Đề bài. Cho tam giác ABC vuông tại A. M là trung điểm BC, D đối xứng với A qua M.
Đề bài. Cho tam giác ABC vuông tại A, AH là đường cao. Biết ; AB = 15cm.
Đề bài. Rút gọn biểu thức P = .
Đề bài. Tìm x biết: (x + 7) – 25 = 13.
Đề bài. Cho tứ giác ABCD có AB = AD, CB = CD, .
Đề bài. Giải phương trình: tan2x + cot2x = 1 + .
Đề bài. Cho C = 5 + 52 + … + 520. Chứng minh rằng C chia hết cho 5; 6; 13.
Đề bài: Cho A = 2 + 22 + 23 + … + 260. Chứng minh rằng A chia hết cho 3; 5; 7.
Đề bài: Tìm các số nguyên n biết 3n – 1 chia hết cho n – 2.
Đề bài: Cho C = 1 + 4 + 42 + 43 +… + 42021. Chứng minh C chia hết cho 21.
Đề bài: Cho B = 1 + 3 + 32 + 33 + … + 3101. Chứng minh rằng B chia hết cho 13.
Đề bài: Cho A = (2m – 1; m + 3) và B = (–4; 5). Tìm m sao cho A ⊂ B.
Đề bài: Cho . Chứng minh rằng A không phải là số tự nhiên.
Đề bài. Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Một cát tuyến kẻ qua A cắt đường tròn (O) ở B, cắt đường tròn (O') ở C. Kẻ các đường kính BD và CE của hai đường tròn (O) và (O'). Chứng minh
Đề bài: Chứng minh rằng biểu thức sau luôn dương với mọi giá trị của x: x2 + x + 1.
Đề bài: Cho tam giác ABC. Chứng minh điều kiện cần và đủ để ABC cân là
Đề bài: Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 9cm; CH = 16cm.