Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:
Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 1)
Bài 1. Cho tam giác ABC, M, N, P được xác định bởi véctơ
. Chứng minh M, N, P thẳng hàng?
Lời giải:
Ta có:
Ta lại có:
Do đó M, N, P thằng hàng.
Bài 2. Cho a,b ≠ -2 thỏa mãn (2a + 1)(2b + 1) = 9
Lời giải
Ta có: '
.
Bài 3. Chứng minh các bất đẳng thức: với a > 0, b > 0
Lời giải
Xét hiệu
, vì a, b > 0
Xảy ra đẳng thức khi và chỉ khi a = b.
Bài 4. Cho a > 0 và b > 0. Chứng minh rằng
Lời giải
Vì a > 0 và b > 0 ⇒ ab > 0
Vậy .
Vậy bất đẳng thức được chứng minh.
Lời giải
Để đi từ A đến B qua 9 bước thì chỉ có 1 cách đi duy nhất là các bước đi đều phải đi từ dưới lên hoặc đi từ trái qua phải.
Gọi M(i; j) là điểm bất kì nằm ở hàng i cột j với và
Để đến được điểm M thì chỉ có 3 cách đi đó là từ điểm có tọa độ (i − 1; j) hoặc (i; j − 1) như hình vẽ dưới:
Gọi số cách đi đến M là f(i; j) thì theo quy tắc cộng ta có
Từ đó ta được kết quả sau:
Vậy có 126 cách đi thỏa mãn
Lời giải
Ta có:
Đáp án đúng là: C.
Lời giải
a); (vì )
Vậy
b); (vì )
Vậy
Lời giải
mà 81 – 9 = 72 nên x = 2
Lời giải
Vậy không tìm được x
Bài 10. Cho Tính giá trị của biểu thức
Lời giải
Vì
Thay (1) vào P ta được
⇒ P = 3.
Bài 11. Cho a, b, c khác nhau đôi một và
Lời giải
Từ giả thiết suy ra ab + bc + ac = 0 nên
Tương tự: ,
a)
b)
c)
.
Bài 12: Cho cân tại A, AM là đường cao. Gọi N là trung điểm của AC. D là điểm đối xứng của M qua N.
a) CMR : tứ giác ADCM là hình chữ nhật
b) CMR : tứ giác ABMD là hình bình hành và BD đi qua trung điểm O của AM
Lời giải:
a. Ta có: N là trung điểm AC
M,D đối xứng qua N→ N là trung điểm MD
là trung điểm mỗi đường
Vì
là hình chữ nhật
b. Vì cân tại là trung điểm
AMCD là hình chữ nhật ⇒ AD // CM, AD = CM
⇒ AD // BM, AD = BM
⇒ ABMD là hình bình hành
tại trung điểm mỗi đường
Gọi
⇒ O là trung điểm AM, BD
⇒ BD đi qua trung điểm O của AM
c) Vì O, N là trung điểm AM,DM và
⇒ I là trọng tâm
Vì O là trung điểm BD → OB = OD
Lời giải:
Nếu xóa bỏ chữ số 5 ở tận cùng của số lớn thì được số bé
Suy ra số lớn gấp 10 lần số bé và hơn 5 đơn vị
Số bé là: (95 - 5) :(10 - 1) x 1 = 10
Suy ra số lớn là: 105
Tổng 2 số đó là: 105 + 10 = 115.
Lời giải:
Gọi số học sinh giỏi cả ba môn của lớp 10 A là x ( x > 0, x ∈ N )
Mà số học sinh lớp 10A là 45 học sinh .
⇒ x + 5 + x + 4 + x + 3 + 11 - x + 9 - x + 8 - x + x = 45
⇒ 40 + x = 45
⇒ x = 5 (TM)
Vậy có 5 bạn giỏi cả ba môn toán lý và hóa.
Lời giải:
Đáp án: D
Số học sinh chỉ đạt học lực giỏi là: 15 – 10 = 5 (học sinh).
Số học sinh chỉ đạt hạnh kiểm tốt là: 20 – 10 = 10 (học sinh).
Số học sinh được nhận thưởng là: 5 + 10 + 10 = 25 (học sinh).
Lời giải:
Hình nón được tạo thành khi quay hình tam giác vuông một vòng quanh một cạnh góc vuông cố định.
Nếu đặt mặt đáy của hình nón song song với mặt phẳng hình chiếu cạnh, thì hình chiếu đứng là hình tam giác cân và hình chiếu cạnh có hình tròn.
Bài 17: Nếu đặt mặt đáy của hình nón song song với mặt phẳng chiếu cạnh thì hình chiếu đứng và hình chiếu cạnh có hình dạng:
A. Hình tròn, hình tam giác cân
B. Hình tam giác cân, hình tròn
C. Hình tròn, hình tam giác đều
D. Hình tam giác đều, hình tròn
Lời giải:
Đáp án đúng: A
Nếu đặt mặt đáy của hình nón song song với mặt phẳng hình chiếu cạnh, thì hình chiếu đứng là hình tam giác cân
và hình chiếu cạnh có hình tròn.
Lời giải:
Gọi E, D lần lượt là trung điểm AB, AC, ta có I, E, D thẳng hàng
MN cắt BD tại J, hạ CH vuông góc ED tại H
Có
Có
Ta có △CBD ∼ △CEH (g, g)
⇒ △CBG ∼△CEI (c, g, c) (2)
từ (3, 4) → △BEC∼△GIC (c, g, c)
(đpcm).
b) BM.AC + CN.AB + AI2 = AB.AC
Lời giải:
a) Xét tam giác AIM vuông tại I có:
Xét tam giác BIC, có:
Xét ∆BMI và ∆BIC, có:
(cmt)
⇒ ∆BMI ̴ ∆BIC (g – g)
Chứng minh tương tự ta có ∆CNI ̴ ∆CIB (g – g)
.
b) Từ cm trên suy ra :△BMI ∼ △INC
⇒ BM.CN = MI.NI
ta có : △AMN là tam giác cân
⇒ MI = NI
⇒ BM.CN = IM2
ta lại có : △AIM vuông
⇒ IM2 = AM2 – AI2
⇒ BM.CN = AM2 – AI2
= AM.AN – AI2 = (AB − BM)(AC − CN) – AI2
= AB.AC − AB.CN − BM.AC + BM.CN – AI2
⇒ BM.AC + CN.AB + AI2 = AB.AC.
b) A, M, N, D cùng thuộc 1 đường tròn
Lời giải:
a) Kẻ NH vuông góc với DO
Ta có ABCD là hình vuông
Mà N là trung điểm DC,
Suy ra NH là đường trung bình
Mà M là trung điểm OB (gt)
Suy ra H là trung điểm OD,
Suy ra HM = OA
Xét tam giác OMA và tam giác HNM có:
NH = MO
HM = OA
(đpcm).
b) Gọi I là trung điểm của AN
Tam giác AMN vuông tại M
Tam giác ADN vuông tại D
Suy ra IA = IM = IN = ID
Suy ra 4 điểm A, M, N, D cùng thuộc đường tròn tâm I, bán kính IA.
c) Xét đường tròn ngoài tiếp tứ giác AMND có AN là dường kính và DM là dây nên AN > DM.
Lời giải:
⇔ 4m2 + 6m – 4 = 0
Bài 22: Tìm tất cả các giá trị thực của tham số m để hàm số có cực trị đồng thời
Lời giải:
Chọn C
Ta có
Hàm số (1) có cực trị thì PT y' = 0 có 2 nghiệm phân biệt
⇔ x2 - 2mx + m2 – 1 = 0 có 2 nhiệm phân biệt
Khi đó, điểm cực đại A(m - 1; 2 - 2m) và điểm cực tiểu B (m + 1; - 2m)
Ta có
Lời giải:
BE.AC + CF.AB
H lên AB, AC. Chứng minh rằng: AE. AB = AF. AC
Lời giải:
Xét tam giác ABH vuông tại H có HE là đường cao
⇒ AE.AB = AH2 (1)
Xét tam giác AHC vuông tại H có HF là đường cao
⇒ AF.AC = A H 2 (2)
Từ (1) và (2) ⇒ AE.AB = AF.AC
Bài 25: Cho biết x và y là hai đại lượng tỉ lệ nghịch và khi x = 9 thì y = - 15
a) Tìm hệ số tỉ lệ nghịch của y đối với x
c) Tính giá trị của y khi x = - 5, x = 18
Lời giải:
a) Gọi a là hệ số tỉ lệ
Khi x = 3, y = 8
Vậy hệ số tỉ lệ là 24
b) Ta có hệ số tỉ lệ k = 24 nên .
c) Khi .
Khi .
Lời giải:
Theo bài ra ta có: x và y là hai đại lượng tỉ lệ thuận.
⇒ y = k.x
Khi x = 10 thì y = 5
⇒ 5 = k.10
khi .
Bài 27: Giải các phương trình sau
Lời giải:
Chia 3 trường hợp: 1 ≤ x ≤ 5; x ≥ 10; 5 < x < 10 để phá trị tuyệt đối và giải bình thường.
Bài 28: Tìm các cặp số nguyên x,y thỏa mãn x3 – 6x2 + 12x = y3 + 27
Lời giải:
Ta có (x − 2)3 = x3 − 6x2 + 12x – 8 > x3 − 6x2 + 12x – 27 = y3
Ta có 6x2 − 12x + 27 > 0 với moi x
⇒ −6x2 + 12x – 27 < 0
⇒ y3 > x3
mà x y nguyên nên y3 nguyên ⇒ y3 = (x − 1)3.
Lời giải:
.
Bài 30: Từ các chữ số: 1, 2, 3, 4, 5, 6, 7. Hỏi có thể lập được bao nhiêu số có 6 chữ số khác nhau mà chữ số 1 không đứng cạnh chữ số 6
Lời giải:
Nếu không có chữ số 1: Có 6! = 720 cách lập
Nếu không có chữ số 6: Có 6! = 720 cách lập
Nếu có đồng thời các chữ số 1 và 6:
Chọn ra thêm 4 chữ số khác có cách
Xếp chữ số 1 với 4 chữ số khác có 5! cách
Xếp chữ số 6 vào có 6 – 2 = 4 vị trí có thể
Tạo được: .5!.4 = 2400 số
Tất cả có: 720 + 720 + 2400 = 3840 số thỏa mãn
Lời giải:
Đặt x = 23. Số các số cần lập có dạng với a; b; c; d ∈{1; x; 4; 5; 6; 7} có số như vậy
Mặt khác khi hoán vị hai số 2 và 3 ta được thêm một số thỏa yêu cầu bài toán.
Vậy có 360.2 = 720 số thỏa yêu cầu bài toán.
Chọn A.
b) C/m AD là phân giác của góc HAC
Lời giải:
a ) Do DB = BA = 2ΔBAD cân tại B
⇒ DAB = ADB
b ) Xét ΔABC vuông tại A
CAD + DAB = 90 độ
⇒ Xét ΔAND vuông tại N
DAN + ADN = 90 độ
Mà DAB - ADB
⇒ CAD - DAN
AD là phân giác của CAN
c) Xét hai tam giác vuông KAD và HAD
AD chung
KAD = DAN
⇒ ΔKAD = ΔCAN
⇒ KA = AN
d ) AC + AB = CK + KA + AB
BC + AN = CB + DB + AN
AN = KA
AB = BD
CD > CK
⇒ BC + AN > AC + AB
Bài 33: Cho tam giác ABC vuông góc tại A,có AB = AC.Gọi K là trung điểm của cạnh BC
a) Chứng minh tam giác AKB = tam giác AKC và AK vuông góc với BC.
b) Từ C kẻ đường thẳng vuông góc với BC, cắt AB tại E. Chứng minh EC song song với AK.
Lời giải:
a) Xét tam giác AKB và AKC có:
AB = AC (giả thiết)
KB = KC (do K là trung điểm của BC)
AK chung
Do đó: △AKB = △AKC(c.c.c) (đpcm)
Mà
Do đó:
⇒ AK⊥BC (đpcm)
b) Ta thấy: EC⊥BC; AK⊥BC (đã cm ở phần a)
⇒ EC // AK (đpcm)
c) Vì tam giác ABC là tam giác vuông cân tại A nên
Tam giác CBE vuông tại C có nên tam giác CBE cân tại C. Do đó CE = CB (đpcm)
ít nhất một trong ba môn (Toán, Lý, Hóa) của lớp 10A là:
Lời giải:
Đáp án A
Theo giả thiết Đề bài cho, ta có biểu đồ Ven:
Dựa vào biểu đồ Ven ta thấy:
Số học sinh chỉ giỏi Toán và Lý (không giỏi Hóa) là: 6 – 3 = 3 (em)
Số học sinh chỉ giỏi Toán và Hóa (không giỏi Lý) là: 4 – 3 = 1 (em)
Số học sinh chỉ giỏi Lý và Hóa (không giỏi Toán) là: 5 – 3 = 2 (em)
Số học sinh chỉ giỏi một môn Toán là: 10 – 3 – 3 – 1 = 3 (em)
Số học sinh chỉ giỏi một môn Lý là: 10 – 3 – 3 – 2 = 2 (em)
Số học sinh chỉ giỏi một môn Hóa là: 11 – 1 – 3 – 2 = 5 (em)
Số học sinh giỏi ít nhất một trong ba môn là:
3 + 2 + 5 + 1 + 2 + 3 + 3 = 19 (em)
môn (Toán, Lý, Hoá ) của lớp 10A là:
Lời giải:
Đáp án C
Số học sinh giỏi toán, lý mà không giỏi hóa: 3 – 1 = 2.
Số học sinh giỏi toán, hóa mà không giỏi lý: 4 – 1 = 3.
Số học sinh giỏi hóa, lý mà không giỏi toán: 2 – 1 = 1.
Số học sinh chỉ giỏi môn lý: 5 – 2 – 1 − 1 = 1.
Số học sinh chỉ giỏi môn hóa: 6 −3 – 1 – 1 = 1.
Số học sinh chỉ giỏi môn toán: 7 – 3 – 2 – 1 = 1.
Số học sinh giỏi ít nhất một (môn toán, lý, hóa) là số học sinh giỏi 1 môn hoặc 2 môn hoặc cả 3 môn: 1 + 1 + 1 + 1 + 2 + 3 + 1 = 10.
Bài 36: Cho tam giác ABC. Có AB nhỏ hơn AC trên cạnh AB lấy điểm E sao cho BE =AC. Gọi I , D,F lần lượt là trung điểm của CE, AE , BC chứng minh
Lời giải:
Xét ΔEAC có
D là trung điểm của AE
I là trung điểm của CE
Do đó: DI là đường trung bình
⇒ DI // AC và
Xét ΔEBC có
F là trung điểm của BC
I là trung điểm của EC
Do đó: FI là đường trung bình
⇒ FI // EB và
Ta có:
mà EB = AC nên IF = ID
hay ΔIFD cân tại I
Mà nên
hay .
Lời giải:
Từ giả thiết ta có MP, NP, NQ, QM lần lượt là các đường trung bình của các tam giác BDE, ECD, DCB, BEC . (định nghĩa đường trung bình).
Đặt BD = CE = 2a
Áp dụng định lý đường trung bình và giả thiết vào bốn tam giác trên ta được:
Suy ra MN = NP = PQ = QM
Tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi.
Áp dụng tính chất về đường chéo vào hình thoi MNPQ ta được: MN⊥PQ
Bài 38: Nêu khái niệm hình chiếu? Cho ví dụ và phân tích?
Lời giải:
- Hình chiếu của vật thể là hình nhận được trên một mặt phẳng (người ta còn gọi hình chiếu là cái bóng của vật thể)
- Ví dụ: Ta lấy đèn pin chiếu thẳng vào mặt chính diện của một vật hình vuông, ta lấy mặt phẳng của bức tường để
thu hình chiếu. Suy ra ta sẽ thu được hình chiếu trên vạch tường (hay cái bóng).
Lời giải:
Các vectơ khác vectơ – không được lập ra từ 4 điểm đã cho là:
Bài 40: Trong không gian cho 4 điểm A,B,C,D. Từ các điểm trên ta có thể lập được bao nhiêu vectơ khác vecto không?
Lời giải:
Ta có 4C2.2=12 vecto
Lời giải:
Lời giải:
Bài 43: Cho tam giác ABC vuông tại A gọi M là trung điểm BC biết BC =13 tính AM
Lời giải:
Tam giác ABC vuông tại A, AM là trung tuyến kẻ từ A xuống BC nên ta có:
Vậy
Bài 44: Cho tam giác ABC vuông tại A có M là trung điểm của BC
b) gọi N là trung điểm của AB cho MN // AC
c) kẻ MD // AD chứng minh tứ giác ANMD là hình chữ nhật
Lời giải:
a) Xét △ ABC vuông tại A có :
AM là đường trung tuyến
Nên : ( Tính chất đường trung tuyến ứng với cạnh huyền )
Mà : BC = 10 ( cm )
Suy ra : AM = 10 : 2 = 5 ( cm )
b) Xét △ ABC vuông tại A có :
M là trung điểm của BC
N là trung điểm của AB
Nên : MN là đường trung bình của △ ABC
Do đó : MN // AC và
c) Bạn nên sửa là MD // AB. ( D ∈ AC )
Xét Δ ACB có :
M là trung điểm của BC
MD // AB
Nên : MD là đường trung bình của △ ACB
Do đó : MD // AB và
Hay : MD // AN ( N ∈ AB )
Lại có : MN // AD ( D ∈ AC )
Suy ra : ANMD là hình bình hành
Mà : Góc A = 90 độ
Vậy ANMD là hình chữ nhật
Lời giải:
Số tự nhiên thỏa mãn có dạng với a, b, c, d ∈ A và đôi một khác nhau.
TH1: d = 0
Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có 5.4.3 = 60 số.
TH2: d ≠ 0 ; d có 2 cách chọn là 2, 4
Khi đó có 4 cách chọn a( vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.
Theo quy tắc nhân có: 2.4.4.3 = 96 số
Vậy có tất cả: 96 + 60 = 156 số.
Lời giải:
Gọi số cần tìm là (e chẵn và các chữ số khác nhau từng đôi một )
TH1 : e = 0
Chọn e : 1 cách
Chọn a : 5 cách
chọn b : 4 cách
chọn c : 3 cách
chọn d : 2 cách
=> Theo Quy tắc nhân có : 1.5.4.3.2 = 120 .
TH2 : e # 0
Chọn e : 2 cách
Chọn a : 4 cách
chọn b : 4 cách
chọn c : 3 cách
chọn d : 2 cách
→ Theo quy tắc nhân có :2.4.4.3.2 = 192
→ Có tất cả 192 + 120 = 312 số chẵn có 5 chữ số khác nhau
Lời giải:
Chọn A.
+ Do M, N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC .
suy ra MN // AC và (1).
+ Tương tự QP là đường trung bình của tam giác ADC
suy ra QP // AC và (2).
+ Từ (1) và (2) suy ra MN // QP và MN = PQ do đó tứ giác MNPQ là hình bình hành
Vậy ta có
Bài 48: Cho tứ giác ABCD có M , N , P , Q lần lượt là trung điểm của AB , BC , CD , DA . Chứng minh tứ giác MNPQ là hình bình hành , IMPN là hình bình hành
Lời giải:
Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm BC
→ MN là đường trung bình
→ MN//AC và (1)
Xét tam giác ADC có:
P là trung điểm DC
Q là trung điểm AD
→ PQ là đường trung bình
→ PQ//AC và (2)
(1),(2)
→ MNPQ là hình bình hành
Lời giải:
Các số thỏa mãn ĐK Đề bài có dạng
+ Chọn 33 chữ số khác nhau từng đôi một từ {1;2;3;4;5;6;7} và xếp vào 3 vị trí
→ có cách
→ Có 210 số thỏa mãn ĐK Đề bài
Bài 50: Số các số có 4 chữ số đôi một khác nhau được tạo thành từ các chữ số 2, 4, 6, 7, 8, 9 là:
Lời giải:
Mỗi số thỏa mãn bài toán và một chỉnh hợp chập 4 của 6 phần tử.
Số các số là: số.
Đáp án cần chọn là: C
Bài 51: Một trang trại cân thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất?
Lời giải:
Gọi số xe loại lớn, nhỏ cần thuê lần lượt là x, y xe, (x, y ≥ 0, x, y ∈ Z)
→ T = 4x + 2y (triệu đồng) là số tiền thuê xe.
Suy ra để số tiền thuê xe nhỏ nhất thì T = 4x + 2y nhỏ nhất
Theo bài ta có:
Vẽ miền nghiệm của hệ trên, thấy các điểm giao nhau là:
A (12, 10), B (12, 0), C (11.250), D (5,10),
Suy ra:
TA = 68, TB = 48, TC = 45, TD = 40
→TD nhỏ nhất vì x, y ∈ Z
→Cần thuê 5 xe lớn và 10 xe nhỏ
Bài 52: Chứng minh rằng: D = 1 + 4 + 42 + 42 + ... + 458 + 459 chia hết cho 21.
Lời giải:
D = 1 + 4 + 42 + 42 + ... + 458 + 459
= (1 + 4 + 42) + (43 + 44 + 45) + …+ (457 + 458 + 459)
= (1 + 4 + 42) + 43.(1 + 4 + 42) + …+ 457(1 + 4 + 42)
= 21 + 43.21 + …+ 457.21 chia hết 21.
Bài 53: Cho A = 1 + 4 + 42 + 43 +...+ 411. Chứng tỏ rằng:
Lời giải:
a) A=1 + 4 + 42 + 43 + ... +411
= (1 + 4 + 42) + (43 + 44 + 45) + (46 + 47 + 48) + (49 + 410 + 411)
= (1 + 4 + 42) + (43.1 + 43.4 + 43.42) + (46.1 + 46.4 + 46.42) + (49.1 + 49.4 + 49.42)
= (1 + 4 + 42).1 + 43.(1 + 4 + 42) + 46.(1 + 4 + 42) + 49.(1 + 4 + 42)
= 21.1 + 43.21 + 46.21 + 49.21
= 21.(1 + 43 + 46 + 49)
Suy ra A chia hết cho 21.
b) A = 1 + 4 + 42 + 43 + ... + 411
= (1 + 4 + 42 + 43 + 44 + 45) + (46 + 47 + 48 + 49 + 410 + 411)
= (1 + 4 + 42 + 43 + 44 + 45) + (46.1 + 46.4 + 46.42 + 46.43 + 46.44 + 46.45)
= (1 + 4 + 42 + 43 + 44 + 45).1 + 46.(1 + 4 + 42 + 43 + 44 + 45)
= 1365.1 + 46.1365
= 1365.1 + 46.1365
= 1365.(1 + 46)
Suy ra 1365 chia hết cho 105 nên A chia hết cho 105.
Bài 54: Người ta dùng mấy hình chiếu để biểu diễn khối tròn xoay?
Lời giải:
Chọn đáp án: B
Giải thích: Vì có 2 hình chiếu trùng nhau.
Bài 55: x2 – 16 + 4y2 + 4xy. Phân tích đa thức thành nhân tử
Lời giải:
x2 – 16 − 4xy + 4y2
= (x2 − 2.x.2y + 2y2) – 42
= (x − 2y)2 – 42
= (x − 2y − 4)(x − 2y + 4)
Bài 56: Phân tích đa thức thành nhân tử 16 - x² - 4xy - 4y²
Lời giải:
16 – x2 – 4xy – 4y2
= 16 – (x2 + 4xy + 4y2)
= 42 – (x + 2y)2
= (4 – x – 2y)(4 + x + 2y)
b.Kẻ trung tuyến Am của tam giác ABC. C/m: AM⊥ EF
Lời giải:
a) EHFA có góc HEA = HFA = EAF = 900 nên tứ giác đó là hình chữ nhật
⇒ EF =AH ( 2 đường chéo)
b) Gọi EF cắt AH tại I
Gọi AM cắt EF tại N
Góc BHE = HCA (2 góc đồng vị)
Mà BHE + EBH = BHE + EHI = 90
⇒ EBH = EHI (1)
Theo tính chất hình chữ nhật EI = IH => EHI = IEH (2)
MB = MA ⇒ MBE = MAB (3)
Từ (1),(2),(3) ⇒ IEH = BAM
Mặt khác IEH + IEA = 90 ⇒ BAM + IEA = 90
⇒ ANE = 90
⇒ AM vuông góc EF tại N
sáng từ bóng đèn bin (nguồn sáng điểm) cách trần nhà 1m
a, Hãy tính đường kính vệt sáng trên trần nhà
Lời giải:
a) Xét tam giác S’IA đồng dạng với tam giác S’I’A’ có:
mà SI = S'I → A'B'= 30cm
b) Để đường kính vệt sáng tăng gấp đôi ta phải di chuyển bóng đèn đến gần gương khi đó
Vậy ta phải dịch bóng đèn lại gần gương một đoạn là:
H = 100 – 40 = 60(cm).
Bài 59: Cho DABC. Tìm tập hợp điểm M trong các trường hợp sau:
Lời giải:
a) Gọi K là điểm thoả mãn:
L là điểm thoả mãn:
Ta có:
Vậy Tập hợp điểm M là đường trung trực của đoạn thẳng KL.
a) Tính độ dài các đoạn AH, AB, AC
b) Gọi M là trung điểm của AC. Tính số đó góc AMB (làm tròn đến độ)
c) Kẻ AK vuông góc BM (K thuộc BM). Chứng minh:
Lời giải
A_ Tính độ dài các đoạn AH, AB, AC
∆ABC vuông tại A:
b) Gọi M là trung điểm của AC. Tính số đo góc AMB (làm tròn độ). ∆ABM vuông tại A
c) Kẻ AK vuông góc với BM (). Chứng minh
∆ABM vuông tại A có:
+ AB2 = BK.BM
∆ABC vuông tại A có:
+ AB2 = BH.BC