Cho C = 5 + 5^2 + … + 5^20. Chứng minh rằng C chia hết cho 5; 6; 13

101

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 87)

Đề bài. Cho C = 5 + 52 + … + 520. Chứng minh rằng C chia hết cho 5; 6; 13.

Lời giải:

C = 5 + 52 + … + 520

C = 5(1 + 5 + 52 + … + 519 5

Vậy C chia hết cho 5.

* C = 5 + 52 + … + 520

C = (5 + 52) + (53 + 54) + … + (519 + 520)

C = 5(1 + 5) + 53(1 + 5) + …. + 519(1 + 5)

C = 5.6 + 53.6 +… + 519.6

C = 6(5 + 53 + …. + 519)

Vì 6  6 nên 6(5 + 53 + …. + 519 6

Vậy C chia hết cho 6.

* C = 5 + 52 + … + 520

C = (5 + 52 + 53 + 54) + … + (517 + 518 + 519 + 520)

C = 5.(1 + 5 + 52 + 53) + … + 517(1 + 5 + 52 + 53)

C = 5.156 + 55.156 + … + 517.156

C = 156.(5 + 55 + … + 517)

Vì 156  13 nên 156.(5 + 55 + … + 517 13

Vậy C chia hết cho 13.

Đánh giá

0

0 đánh giá