Cho tam giác ABC vuông tại A, đường cao AH, M là điểm bất kì thuộc cạnh BC

215

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 87)

Đề bài. Cho tam giác ABC vuông tại A, đường cao AH, M là điểm bất kì thuộc cạnh BC. Kẻ MI vuông góc với AC (I thuộc AC), kẻ MK vuông góc với AB (K  AD).

a) Chứng minh KI = MA.

b) Gọi O là giao điểm của AM và KI. Chứng minh .

Lời giải:

15000 câu hỏi ôn tập Toán có đáp án (Phần 97) (ảnh 1)

a) Xét tứ giác AIMK có: A^=K^=I^=90°

Nên AIMK là hình chữ nhật

 AM cắt KI tại trung điểm mỗi đường (tại O) và AM = KI

b) AIMK là hình chữ nhật, O là giao KI và AM

 O là tâm đường tròn ngoại tiếp tứ giác AMKI

Hay A, K, M, I cùng thuộc đường tròn tâm O có bán kính là R = OK = OI = OA = OM

Lại có: AHM^=90° mà O là trung điểm AM

Nên OH = OA = OM = 12AM

Suy ra: OH = OA = OM = OK = OI

Xét tam giác HIK có: OH = OK = OI =12KI

Suy ra: tam giác HIK vuông tại H hay IHK^=90° .

Đánh giá

0

0 đánh giá