Dấu hiệu nhận biết hình vuông 2025 và bài tập vận dụng

10

Tailieumoi.vn xin giới thiếu tới bạn đọc tài liệu về Dấu hiệu nhận biết hình vuông chi tiết nhất, tài liệu gồm đầy đủ về lý thuyết về Dấu hiệu nhận biết hình vuông, các dạng bài tập và ví dụ minh họa, giúp các bạn củng cố kiến thức, học tốt môn Toán hơn.

Dấu hiệu nhận biết hình vuông

1. Định nghĩa hình vuông

Hình vuông là tứ giác có bốn góc vuông và có bốn cạnh bằng nhau.

Lý thuyết Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Tổng quát: ABCD là hình vuông ⇔Lý thuyết Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Nhận xét:

+ Hình vuông là hình chữ nhật có bốn cạnh bằng nhau.

+ Hình vuông là hình thoi có bốn góc vuông.

+ Hình vuông vừa là hình chữ nhật vừa là hình thoi.

2. Dấu hiệu nhận biết hình vuông

 (ảnh 1)

+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

+ Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.

+ Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.

+ Hình thoi có hai đường chéo bằng nhau là hình vuông.

+ Hình thoi có một góc vuông là hình vuông.

Ví dụ

  (ảnh 2)

Hình chữ nhật ABCD có AB = BC  ABCD là hình vuông.

Hình chữ nhật ABCD có AC  BD  ABCD là hình vuông.

Hình chữ nhật ABCD có AC là tia phân giác của góc A hoặc hoặc góc C  ABCD là hình vuông.

Hình thoi ABCD có AC = BD  ABCD là hình vuông.

Hình thoi ABCD có A^=900;B^=900;C^=900 hoặc D^=900  ABCD là hình vuông.

Ví dụ: 

Cho tam giác ABC vuông tại A. Phân giác trong AD của góc A (D ∈ BC ). Vẽ DF ⊥ AC, DE ⊥ AB. Chứng minh tứ giác AEDF là hình vuông.

Lời giải:

Lý thuyết Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

+ Xét tứ giác AEDF có Aˆ = Eˆ = Fˆ = 900

⇒ AEDF là hình chữ nhật .       (1)

Theo giả thiết ta có AD là đường phân giác của góc Aˆ

 EADˆ = DAFˆ = 450.

+ Xét Δ AED có AEDˆ = 900; DAEˆ = 450  EDAˆ = 450

⇒ Δ AED vuông cân tại E nên AE = ED       (2)

Từ (1), (2) ⇒ AEDF là hình vuông (dấu hiệu 1 – mục 3)

3. Các dạng toán về hình vuông

Dạng 1: Vận dụng dấu hiệu nhận biết để chứng minh một tứ giác là hình vuông.

Phương pháp:

Ta sử dụng các dấu hiệu nhận biết:

+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

+ Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông 

+ Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông

+ Hình thoi có một góc vuông là hình vuông 

+ Hình thoi có hai đường chéo bằng nhau là hình vuông

Dạng 2: Vận dụng kiến thức về hình vuông để chứng minh và giải các bài toán cơ bản: chứng minh một tứ giác là hình vuông,tìm thêm điều kiện của đề bài để một tứ giác là hình vuông, tính độ dài…

Phương pháp:

Ta sử dụng định nghĩa và các tính chất của hình vuông.

+ Hình vuông là tứ giác có bốn góc vuông và có bốn cạnh bằng nhau.

+ Hình vuông có tất cả các tính chất của hình chữ nhật và hình thoi.

+ Đường chéo của hình vuông vừa bằng nhau vừa vuông góc với nhau

4. Bài tập về hình vuông

Bài 1: Cho hình vuông ABCD. Gọi I,K lần lượt là trung điểm của AD và DC.

a) Chứng minh rằng BI ⊥ AK.

b) Gọi E là giao điểm của BI và AK. Chứng minh rằng CE = AB.

Lời giải:

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ BAI và Δ ADK có:Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ BAI = Δ ADK ( c - g - c )

 ABIˆ = DAKˆ (góc tương ứng bằng nhau)

 IAEˆ + EABˆ = 900  ABIˆ + EABˆ = 900

+ Xét Δ ABE có EABˆ + ABEˆ + AEBˆ = 1800

 AEBˆ = 1800 - ( ABEˆ + BAEˆ ) = 1800 - 900 = 900 hay AK ⊥ BI (đpcm)

+ Xét tứ giác EBCK có KEBˆ + EBCˆ + BCKˆ+ CKEˆ = 3600

 EBCˆ + EKCˆ = 1800.

 AKDˆ + AKCˆ = 1800 nên EBCˆ = EKDˆ

+ Tứ giác EBCK nội tiếp nên BECˆ = BKCˆ

 BKCˆ = AKDˆ nên EBCˆ = BECˆ hay tam giác BEC cân tại C

⇒ CE = BC = AB (đpcm)

Bài 2: Cho hình vuông ABCD cạnh bằng a. Trên hai cạnh BC, CD lấy lần lượt hai điểm M, N sao cho MANˆ = 450. Trên tia đối của của tia DC lấy điểm K sao cho DK = BM. Hãy tính :

a) Tính số đo KANˆ = ?

b) Chu vi tam giác MCN theo a.

Lời giải:

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

a) Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ ABM = Δ ADK ( c - g - c )

Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án  KANˆ = A3ˆ + A4ˆ = A1ˆ + A3ˆ = 900 - 450 = 450

b) Đặt BM = DK = x thì KN = x + DN, MC = a - x, CN = a - DN

Từ kết quả của hai tam giác bằng nhau ở câu a và giả thiết ta có:

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ Δ AMN = Δ AKN ( c - g - c )

⇒ MN = KN (cạnh tương ứng bằng nhau)

Khi đó, chu vi của tam giác MCN là

MC + CN + MN = a - x + a - DN + x + DN = 2a.

Bài 3: Hãy khoanh tròn vào phương án đúng nhất trong các phương án sau ?

   A. Hình vuông là tứ giác có 4 góc vuông và 4 cạnh bằng nhau.

   B. Hình vuông là tứ giác có 4 góc bằng nhau.

   C. Hình vuông là tứ giác có 4 cạnh bằng nhau.

   D. Hình vuông là tứ giác có hai cạnh kề bằng nhau.

Lời giải:

+ Tứ giác có 4 góc vuông là hình chữ nhật

Hình chữ nhật có 4 cạnh bằng nhau là hình vuông.

⇒ Hình vuông là tứ giác có 4 góc vuông và 4 cạnh bằng nhau.

Chọn đáp án A.

Bài 4: Hãy chọn đáp án sai trong các phương án sau đây ?

   A. Trong hình vuông có hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.

   B. Trong hình vuông có hai đường chéo không vuông góc với nhau.

   C. Trong hình vuông thì hai đường chéo đồng thời là hai trục đối xứng của hình vuông.

   D. Trong hình vuông có hai đường chéo vuông góc với nhau và bằng nhau.

Lời giải:

+ Trong hình vuông có hai đường chéo vuông góc với nhau, bằng nhau và cắt nhau tại trung điểm mỗi đường

+ Hai đường chéo trong hình vuông đồng thời là trục đối xứng của hình vuông đó.

→ Đáp án B sai.

Chọn đáp án B.

Bài 5: Trong các dấu hiệu nhận biết sau thì dấu hiệu nào không đủ điều kiện để tứ giác là hình vuông?

   A. Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

   B. Hình chữ nhật có hai đường chéo vuông gócvới nhau là hình vuông.

   C. Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.

   D. Hình bình hành có hai đường chéo bằng nhau là hình vuông.

Lời giải:

Dấu hiệu nhận biết hình vuông:

+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

+ Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.

+ Hình chữ nhật có một đường chéo là đường phân giác một góc là hình vuông.

+ Hình thoi có một góc vuông là hình vuông.

+ Hình thoi có hai đường chéo bằng nhau là hình vuông.

→ Hình bình hành có hai đường chéo bằng nhau thì không là hình vuông.

→ Đáp án D sai.

Chọn đáp án D.

Bài 6: Tìm câu nói đúng khi nói về hình vuông?

   A. Hình vuông vừa là hình chữ nhật, vừa là hình thoi.

   B. Hình thoi có một góc vuông là hình vuông.

   C. Hình thoi có hai đường chéo bằng nhau là hình vuông.

   D. Các phương án đều đúng.

Lời giải:

Dấu hiệu nhận biết hình vuông:

+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.

+ Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.

+ Hình chữ nhật có một đường chéo là đường phân giác một góc là hình vuông.

+ Hình thoi có một góc vuông là hình vuông.

+ Hình thoi có hai đường chéo bằng nhau là hình vuông.

⇒ Hình vuông vừa là hình chữ nhật, cũng vừa là hình thoi.

⇒ Cả 3 phương án đều đúng.

Chọn đáp án D.

Bài 7: Một hình vuông có độ dài cạnh bằng 4cm thì độ dài đường chéo của hình vuông là ?

A. 8cm   

B. √ 32 cm

C. 5cm   

D. 4cm

Lời giải:

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Hình vuông có độ dài cạnh là a ( cm )

Áp dụng định lý Py – to – go thì độ dài đường chéo của hình vuông là a√ 2 ( cm )

Do đó với a = 4 thì độ dài đường chéo là 4√ 2 = √ 32 ( cm )

Chọn đáp án B.

Bài 8: Hình bình hành có 1 góc vuông là:

   A. Hình thoi

   B. Hình chữ nhật

   C. Hình vuông

   D. Hình thang cân.

Lời giải:

Hình bình hành có 1 góc vuông là hình chữ nhật

Chọn đáp án B

Bài 9: Cho hình vuông ABCD có AC = 10√2cm . Tính diện tích hình vuông?

A. 200 cm2    

B. 100 cm2

C. 400 cm2    

D. 50cm2

Lời giải:

Gọi độ dài cạnh hình vuông là a.

Suy ra: AB = BC = CD = D = a

Áp dụng định lí Pytago vào tam giác vuông ABC ta có:

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Do đó, diện tích hình vuông đã cho là: S = a2 = 100 cm2

Chọn đáp án B

Bài 10: Cho hình vuông ABCD có O là giao điểm hai đường chéo. Hình vuông có diện tích 400cm2. Tính OA?

A. 10cm   

B. 20cm

C. 10√2cm    

D. 20√2cm

Lời giải:

Diện tích hình vuông là: S = AB2 = 400 nên AB = 20 cm

Áp dụng định lí Pyta go vào tam giác vuông ABC ta có:

AC2 = AB2 + BC2 = 202 + 202 = 800

Suy ra: AC = 20√2cm

Vì ABCD là hình vuông có O là giao điểm của hai đường chéo nên O là trung điểm của AC

Suy ra:

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án C

Bài 11: Cho tam giác ABC vuông cân tại A có M; N và H lần lượt là trung điểm của AB; AC và BC. Hỏi tứ giác AMHN là hình gì ? Chọn câu trả lời đúng nhất

   A. Hình vuông

   B. Hình chữ nhật

   C. Hình thoi

   D. Hình thang vuông

Lời giải:

* Vì N và H lần lượt là trung điểm của AC và BC nên NH là đường trung bình của tam giác

Suy ra: NH// AB và

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

* Chứng minh tương tự, có MH là đường trung bìh của tam giác ABC nên:

MH// AN và

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

* Tứ giác AMHN có 2 các cạnh đối song song với nhau nên là hình bình hành

Lại có : ∠BAC = 90o nên tứ giác AMHN là hình chữ nhât.

* Theo giả thiết, tam giác ABC là tam giác vuông cân tại A nên AC = AB (3)

Từ (1); (2) và (3) suy ra: NH = MH.

Hình chữ nhật AMHN có hai cạnh liền kề NH và MH bằng nhau nên là hình vuông

Chọn đáp án A

Bài 12: Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q theo thứ tự là trung điểm của AB; BC; CD và DA. Hỏi tứ giác MNPQ là hình gì

   A. Hình bình hành

   B. Hình thoi

   C. Hình chữ nhật

   D. Hình vuông

Lời giải:

* Xét tam giác ABC có M và N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác .

Suy ra: MN// AC và

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

* Xét tam giác ACD có P và Q lần lượt là trung điểm của CD và AD nên PQ là đường trung bình của tam giác

Suy ra: PQ // AC và

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Từ (1) và (2) suy ra: MN// PQ và MN = PQ

Do đó, tứ giác MNPQ là hình bình hành.

* Ta có

Bài tập Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Hình bình hành MNPQ có 1 góc vuông nên là hình chữ nhật

Chọn đáp án C

Bài 13: Cho hình vuông có chu vi 28 cm. Độ dài cạnh hình vuông là:

A. 4cm

B. 7 cm           

C. 14 cm         

D. 8 cm

Lời giải

Hình vuông có 4 cạnh bằng nhau nên chu vi hình vuông bằng 4a. (a là độ dài một cạnh)

Từ giả thiết ta có 4a = 28 ⇔ a = 7cm.

Vậy cạnh hình vuông là a = 7cm

Đáp án cần chọn là: B

Bài 14: Cho hình vuông có chu vi 32 cm. Độ dài cạnh hình vuông là:

A. 10cm         

B. 15 cm         

C. 5 cm           

D. 8 cm

Lời giải

Hình vuông có 4 cạnh bằng nhau nên chu vi hình vuông bằng 4a. (a là độ dài một cạnh)

Từ giả thiết ta có 4a = 32 ⇔ a = 8cm.

Vậy cạnh hình vuông là a = 8cm

Đáp án cần chọn là: D

Bài 15: Cho hình vuông có chu vi 16 cm. Bình phương độ dài một đường chéo của hình vuông là:

A. 32              

B. 16              

C. 24              

D. 18

Lời giải

Trắc nghiệm Hình vuông có đáp án

Gọi hình vuông ABCD có chu vi là 16cm. Khi đó 4.AB = 16cm

⇒ AB = 4cm = AB = CD = DA

Xét tam giác ABC vuông tại B, theo định lý Pytago ta có

AB2 + BC2 = AC2 ⇒ AC2 = 42 + 42 ⇔ AC2 = 32

Vậy bình phương độ dài một đường chéo là: 32

Đáp án cần chọn là: A

Đánh giá

0

0 đánh giá