Tìm số nguyên tố p sao cho 2^p + 1 chia hết cho p

253

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 87)

Đề bài: Tìm số nguyên tố p sao cho 2p + 1 chia hết cho p.

Lời giải:

Giả sử p là số nguyên tố thỏa mãn 2p + 1 chia hết cho p.

Theo định lý Fermat, ta có: 2p ≡ 2 (mod p)

Suy ra: (2p – 2)  p

 3 = (2p + 1) – (2p – 2)  p

 p = 3 (thỏa mãn)

Vậy số nguyên tố p cần tìm là 3.

Đánh giá

0

0 đánh giá