Tổng hợp công thức tính diện tích hình tam giác 2024 đầy đủ, chi tiết nhất

14

Tailieumoi.vn xin giới thiếu tới bạn đọc tài liệu về Tổng hợp công thức tính diện tích hình tam giác 2024 đầy đủ, chi tiết nhất, tài liệu gồm đầy đủ về lý thuyết Diện tích tam giác, các dạng bài tập và ví dụ minh họa, giúp các bạn củng cố kiến thức, học tốt môn Toán hơn.

Tổng hợp công thức tính diện tích hình tam giác 2024 đầy đủ, chi tiết nhất

A. Các công thức tính diện tích tam giác

Với S diện tích, h chiều cao, p=(a+b+c)/2 nửa chu vi, r bán kính nội tiếp, R bán kính ngoại tiếp, trung tuyến AM, phân giác AD.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Công thức tính diện tích Tam giác vuông

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

 Công thức tính diện tích Tam giác đều cạnh a

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

B. Bài tập Diện tích tam giác

Ví dụ 1: Cho tam giác ABC có AC = 3, AB = 5, cosA = Công thức, cách tính Diện tích tam giác (cực hay, chi tiết).

a, Tính diện tích tam giác ABC.

b, Tính đường cao ha của tam giác ABC.

Hướng dẫn giải:

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Áp dụng công thức tính diện tích tam giác, ta có diện tích tam giác ABC là:

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Áp dụng công thức tính diện tích tam giác ABC ta lại có:

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Ví dụ 2: Cho tam giác ABC có Công thức, cách tính Diện tích tam giác (cực hay, chi tiết) và cạnh AC = 4. Tính các cạnh còn lại, diện tích tam giác ABC và đường cao hạ từ đỉnh B.

Hướng dẫn giải:

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Ví dụ 3: Cho tam giác ABC ngoại tiếp đường tròn tâm O, bán kính r = 5cm. Tính diện tích tam giác ABC biết các cạnh BC = 7cm, CA = 8cm, AB = 10cm.

Hướng dẫn giải:

+ Nửa chu vi tam giác ABC là: Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

+ Tam giác ABC ngoại tiếp đường tròn tâm O bán kính r = 5cm, nên r là bán kính đường tròn nội tiếp tam giác ABC, áp dụng công thức tính diện tích, ta có diện tích tam giác ABC là: Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Ví dụ 4: Cho tam giác ABC có các đỉnh A(1; -2), B(-2; 3), C(0; 4). Tính diện tích tam giác ABC.

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Hướng dẫn giải:

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Đáp án A

Ví dụ 5: Cho tam giác ABC vuông tại A có AC = 15 và AB = 8. Diện tích, chu vi và đường cao hạ từ A của tam giác ABC lần lượt là.

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Hướng dẫn giải:

+ Tam giác ABC vuông tại A

Do đó diện tích tam giác ABC là: Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

+ Ta có: BC2 = AB2 + AC2 (theo định lý Pytago trong tam giác vuông ABC)

Suy ra: Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Chu vi tam giác ABC là: C = AB + AC + BC = 8 + 15 + 17 = 40

+ Lại có diện tích tam giác ABC là

S = Công thức, cách tính Diện tích tam giác (cực hay, chi tiết) (với ha là độ dài đường cao hạ từ A)

Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Đáp án B

Bài tập tự luyện 

Bài 1. Tam giác ABC có AB = 2, AC = 5, BAC^=60°. Tính diện tích tam giác ABC.

Bài 2. Tam giác ABC có AB = 21, AC = 17, BC = 10. Tính diện tích của tam giác ABC.

Bài 3. Tính diện tích tam giác đều nội tiếp đường tròn bán kính R = 6 cm.

Bài 4. Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C. Tính diện tích của tam giác mới được tạo thành.

Bài 5. Tam giác ABC có BC = a và AC = b. Tìm giá trị góc C để diện tích tam giác ABC là lớn nhất.

 

Đánh giá

0

0 đánh giá