Tứ giác nội tiếp là gì? Tính chất tứ giác nội tiếp và các dạng bài tập

246

Tailieumoi.vn xin giới thiếu tới bạn đọc tài liệu về Tứ giác nội tiếp là gì? Tính chất tứ giác nội tiếp và các dạng bài tập, chi tiết nhất, tài liệu gồm đầy đủ về lý thuyết Tứ giác nội tiếp, các dạng bài tập và ví dụ minh họa, giúp các bạn củng cố kiến thức, học tốt môn Toán hơn.

Tứ giác nội tiếp là gì? Tính chất tứ giác nội tiếp và các dạng bài tập

A. Lý thuyết Tứ giác nội tiếp

1. Khái niệm về tứ giác nội tiếp

Một tứ giác có bốn đỉnh nằm trên một đường tròn được gọi là tứ giác nội tiếp đường tròn (gọi tắt là tứ giác nội tiếp)

Lý thuyết Tứ giác nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

2. Định lý.

    + Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng 180°.

    + Nếu một tứ giác có tổng số đo hai góc đối diện bằng 180° thì tứ giác đó nội tiếp được đường tròn.

Lý thuyết Tứ giác nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

Tứ giác ABCD nội tiếp đường tròn (O), suy ra Lý thuyết Tứ giác nội tiếp - Lý thuyết Toán lớp 9 đầy đủ nhất

3. Dấu hiệu nhận biết tứ giác nội tiếp

    + Tứ giác có tổng hai góc đối bằng 180°.

    + Tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện.

    + Tứ giác có bốn đỉnh cách đều một điểm (mà ta có thể xác định được). Điểm đó là tâm của đường tròn ngoại tiếp tứ giác đó.

    + Tứ giác có hai đỉnh kề nhau cùng nhìn một cạnh chứa hai đỉnh còn lại dưới một góc α.

    + Chú ý: Để chứng minh một tứ giác là tứ giác nội tiếp ta có thể chứng minh tứ giác đó là một trong các hình sau: Hình chữ nhật, hình vuông, hình thang cân.

B. Bài tập Tứ giác nội tiếp

Bài 1. Trong các hình sau, hình nào biểu diễn tứ giác nội tiếp đường tròn?

Tứ giác nội tiếp (Lý thuyết Toán lớp 9) | Kết nối tri thức

A. Hình 1;

B. Hình 2;

C. Hình 3;

D. Hình 4.

Lời giải:

Đáp án đúng là: A

Hình 1 biểu diễn tứ giác nội tiếp đường tròn vì tứ giác có bốn đỉnh nằm trên đường tròn.

Hình 2, 3, 4 không biểu diễn tứ giác nội tiếp đường tròn vì mỗi tứ giác đều có một đỉnh không nằm trên đường tròn.

Vậy ta chọn phương án A.

Bài 2. Cho hình vẽ dưới đây.

Tứ giác nội tiếp (Lý thuyết Toán lớp 9) | Kết nối tri thức

Khi đó số đo các góc DAB^,ADC^ lần lượt bằng

A. 60° và 115°;

B. 90° và 120°;

C. 87° và 123°;

D. 123° và 87°.

Lời giải:

Đáp án đúng là: C

Ta có tứ giác ABCD nội tiếp đường tròn nên:

 DAB^+DCB^=180°

Do đó DAB^=180°DCB^=180°93°=87°.

 ADC^+ABC^=180°

Do đó ADC^=180°ABC^=180°57°=123°.

Vậy DAB^=87°;ADC^=123°.

Do đó ta chọn phương án C.

Bài 3. Độ dài cạnh của hình vuông ABCD nội tiếp đường tròn O;102dm 

A. 102 dm;

B. 202 dm;

C. 10 dm;

D. 20 dm.

Lời giải:

Đáp án đúng là: D

Tứ giác nội tiếp (Lý thuyết Toán lớp 9) | Kết nối tri thức

Vì hình vuông ABCD nội tiếp đường tròn O;102dm nên OB=R=102 (dm).

Suy ra BD=2OB=2102=202 (dm).

Vì ABCD là hình vuông nên AB = AD.

Áp dụng định lí Pythagore cho tam giác ABD vuông tại A, ta được:

AB2 + AD2 = BD2.

Suy ra 2AB2=2022 hay 2AB2 = 800, nên AB2 = 400

Do đó AB = 20 (dm) (do AB > 0).

Vậy ta chọn phương án D.

Bài 4. Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho tam giác ABC nhọn. Hai đường cao AM, CN của tam giác ABC cắt nhau tại H. Chứng minh:

a) MHN^+ABC^=180°.

b) AHC^=ADC^.

c) ADC^=BAM^+90°.

Lời giải:

Tứ giác nội tiếp (Lý thuyết Toán lớp 9) | Kết nối tri thức

a) Ta có HMB^=HNB^=90° (do AM, CN là hai đường cao cắt nhau tại H của tam giác ABC).

Do đó hai điểm M, N cùng nằm trên đường tròn đường kính HB.

Khi đó tứ giác HMBN nội tiếp đường tròn đường kính HB.

Vậy MHN^+MBN^=180° hay MHN^+ABC^=180°.

b) Ta có tứ giác ABCD nội tiếp đường tròn (O) nên ADC^+ABC^=180°.

 MHN^+ABC^=180° (câu a) nên ADC^=MHN^.

Lại có AHC^=MHN^ (cặp góc đối đỉnh) nên AHC^=ADC^.

c) Tam giác ABM, có: AMB^+BAM^+ABC^=180° (tổng ba góc của một tam giác)

 ADC^+ABC^=180° (chứng minh trên)

Suy ra ADC^=AMB^+BAM^=90°+BAM^.<![endif]>

Vậy ADC^=BAM^+90°.

Bài 5. Cho tam giác ABC vuông tại A. Lấy điểm M bất kì trên đoạn AC, đường tròn đường kính CM cắt hai đường thẳng BM và BC lần lượt tại D và N. Chứng minh rằng:

a) Tứ giác ABCD nội tiếp.

b) Các đường thẳng AB, MN, CD cùng đi qua một điểm.

Lời giải:

Tứ giác nội tiếp (Lý thuyết Toán lớp 9) | Kết nối tri thức

a) Gọi I là trung điểm BC. Khi đó, IB=IC=12BC.

Ta có CDM^=90° (góc nội tiếp chắn nửa đường tròn đường kính CM).

Suy ra tam giác BCD vuông tại D.

Do đó ID=12BC (tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông). Suy ra IB = IC = ID.

Tương tự đối với ∆ABC vuông tại A, ta cũng có IA = IB = IC.

Do đó, IA = IB = IC = ID.

Vậy tứ giác ABCD nội tiếp đường tròn tâm I, đường kính BC.

b) Ta có MNC^=90° (góc nội tiếp chắn nửa đường tròn đường kính CM).

Suy ra MN ⊥ BC.

Xét ∆BMC có: MN ⊥ BC, CD ⊥ BM và AB ⊥ MC nên AB, MN, CD là ba đường cao của tam giác, do đó ba đường cao AB, MN, CD cắt nhau tại trực tâm K của tam giác BMC.

Vậy các đường thẳng AB, MN, CD cùng đi qua một điểm.

Bài 6. Người ta làm một logo có dạng hình tròn, trong đó có một hình chữ nhật nội tiếp đường tròn với chiều dài và chiều rộng lần lượt là 6 cm và 4 cm (như hình vẽ).

Tứ giác nội tiếp (Lý thuyết Toán lớp 9) | Kết nối tri thức

Tính diện tích phần bị gạch chéo (làm tròn kết quả đến hàng phần trăm).

Lời giải:

Áp dụng định lí Pythagore, ta có độ dài đường chéo của hình chữ nhật là:

62+42=52=213 (cm).

Hình chữ nhật nội tiếp đường tròn nên đường kính của đường tròn chính là độ dài của đường chéo hình chữ nhật.

Bán kính đường tròn là: R=2132=13 (cm).

Diện tích hình chữ nhật là: Shcn = 6.4 = 24 (cm2).

Diện tích hình tròn là: Shình tròn = πR2 = 13π (cm2).

Diện tích phần bị gạch chéo là: S = Stròn – Shcn = 13π – 24 ≈ 16,84 (cm2).

Vậy diện tích phần bị gạch chéo bằng khoảng 16,84 cm2.

 

Bài 7. Dựa vào hình vẽ, tính các góc của tứ giác ABCD

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Bài 8. Tam giác ABC nội tiếp đường tròn (O; R) có AB = 8cm, AC = 15cm, đường cao AH = 5cm (H nằm ngoài cạnh BC). Tính bán kính của đường tròn.

Lời giải:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

 

Đánh giá

0

0 đánh giá