Hàm số nghịch biến, hàm số đồng biến và các dạng bài tập

2.1 K

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập tài liệu Hàm số nghịch biến, hàm số đồng biến và các dạng bài tập, tài liệu bao gồm lý thuyết và đầy đủ các dạng bài tập, giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

Hàm số nghịch biến, hàm số đồng biến và các dạng bài tập

1. Định nghĩa.

Cho hàm số y = f(x) xác định trên K, với K là một khoảng, nửa khoảng hoặc một đoạn.

- Hàm số y = f(x) đồng biến (tăng) trên K nếu ∀ x1, x2 ∈ K, x1 < x2 ⇒ f(x1) < f(x2).

- Hàm số y = f(x) nghịch biến (giảm) trên K nếu ∀ x1, x2 ∈ K, x1 < x2 ⇒ f(x1) > f(x2).

2. Điều kiện cần để hàm số đơn điệu.

Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.

– Nếu hàm số đồng biến trên khoảng K thì f'(x) ≥ 0, ∀ x ∈ K

– Nếu hàm số nghịch biến trên khoảng K thì f'(x) ≤ 0, ∀ x ∈ K.

3. Điều kiện đủ để hàm số đơn điệu.

Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.

– Nếu f'(x) > 0, ∀x ∈ K thì hàm số đồng biến trên khoảng K.

– Nếu f'(x) < 0, ∀x ∈ K thì hàm số nghịch biến trên khoảng K.

– Nếu f'(x) = 0, ∀x ∈ K thì hàm số không đổi trên khoảng K.

Lưu ý

– Nếu f'(x) ≥ 0,  K (hoặc f'(x) ≤ 0,  K) và f'(x) = 0 chỉ tại một số điểm hữu hạn của K thì hàm số đồng biến trên khoảng K (hoặc nghịch biến trên khoảng K).

4. Các dạng toán thường gặp và phương pháp giải

Phần I. Các bài toán không chứa tham số.

Dạng 1: Sử dụng đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số.

1. Phương pháp giải.

Bước 1. Tìm tập xác định D.

Bước 2. Tính đạo hàm y’ = f'(x). Tìm các giá trị x(i=1, 2, .., n) mà tại đó f'(x) = 0 hoặc f'(x) không xác định.

Bước 4. Sắp xếp các giá trị xi theo thứ tự tăng dần và lập bảng biến thiên.

Bước 5. Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số và chọn đáp án chính xác nhất.

2. Ví dụ minh hoạ.

Ví dụ 1. Cho hàm số y = x3 + 3x2 – 9x – 7  . Khẳng định nào sau đây là khẳng định sai?

A. Hàm số nghịch biến trên khoảng (-3;1).

B. Hàm số đồng biến trên (-9;-5).

C. Hàm số đồng biến trên R.  

D. Hàm số đồng biến trên 5;+

Lời giải

Tập xác định: D=R.

Ta có:

y'=3x2+6x9;

y'=0x=1x=3

Bảng biến thiên:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Kết luận: Hàm số đồng biến trên các khoảng: ;3,  1;+. Hàm số nghịch biến trên khoảng 3;1

Chọn C.

Ví dụ 2. Các khoảng nghịch biến của hàm số y=x4+2x24 là

A. (1;0) và (1;+).

B. (;1) và (1;+).

C. (1;0) và (0;1).

D. (;-1) và (0;1).

Lời giải

Tập xác định: D=R

Ta có:

y'=4x3+4x;

 y'=0x=0x=±1

Bảng biến thiên

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Kết luận: Hàm số đồng biến trên các khoảng: ;1,  0;1. Hàm số nghịch biến trên các khoảng: 1;0,  1;+.

Chọn A.

Ví dụ 3. Chọn mệnh đề đúng về hàm số y=2x1x+2

A. Hàm số nghịch biến trên từng khoảng xác định của nó.

B. Hàm số đồng biến trên tập xác định của nó.

C. Hàm số đồng biến trên từng khoảng xác định của nó.

D. Hàm số nghịch biến trên tập xác định của nó.

Lời giải

Tập xác định: D=\2.Ta có: y'=5x+22>0,x2. Nên hàm số đồng biến trên từng khoảng xác định của nó.

Bảng biến thiên

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Kết luận: hàm số đồng biến trên từng khoảng xác định.

Chọn C.

Ví dụ  4. Cho hàm số y=x+3+22x. Khẳng định nào sau đây là khẳng đúng

A. Hàm số đồng biến trên khoảng (;2) và nghịch biến trên khoảng (2;2).

B. Hàm số đồng biến trên khoảng (;1) và nghịch biến trên khoảng (1;2).

C. Hàm số nghịch biến trên khoảng (;2) và đồng biến trên khoảng (2;2).

D. Hàm số nghịch biến trên khoảng (;1) và đồng biến trên khoảng (1;2).

Lời giải

Tập xác định: D=;2

Đạo hàm:

y'=112x=2x12xy'=02x=1x=1y=6.

Bảng biến thiên:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Kết luận:  hàm số đã cho đồng biến trên khoảng ;1 và nghịch biến trên khoảng (1;2).

Chọn B.

Ví dụ 5. Cho hàm số y=x2+sin2x,   với x0;π. Mệnh đề nào sau đây đúng?

A. Hàm số đồng biến trên 0;π.

B. Hàm số nghịch biến trên 0;π

C. Hàm số nghịch biến trên 0;7π12.

D. Hàm số nghịch biến trên 7π12;11π12.

Lời giải

Tập xác định: D=0;π

Đạo hàm: 

y'=12+2sinxcosx=12+sin2xy'=0sin2x=12

2x=π6+k2π2x=7π6+k2πx=π12+kπx=7π12+kπ   (k)

Do  x0;πkx=11π12x=7π12

Bảng biến thiên

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Chọn D.

Dạng 2: Từ bảng biến thiên, đồ thị hàm số của hàm số f’(x), xác định khoảng đồng biến, nghịch biến của hàm số đã cho.

1. Phương pháp giải.

- Dựa vào bảng biến thiên có sẵn, kết luận khoảng đồng biến, nghịch biến và chọn đáp án đúng.

- Từ đồ thị hàm số của hàm số f’(x), ta có:

+ Khoảng đồng biến của hàm số là khoảng mà tại đó giá trị f'(x) > 0 (nằm phía trên trục hoành).

+ Khoảng đồng biến của hàm số là khoảng mà tại đó f'(x) < 0 (nằm phía dưới trục hoành).

Xét bài toán: Cho bảng biến thiên của hàm số f’(x). Xét tính đồng biến, nghịch biến của hàm số g(x) theo f(x).

- Các bước giải:

Bước 1: Ta tính đạo hàm .

Bước 2: Kết hợp các nguyên tắc xét dấu tích, thương, tổng (hiệu) và bảng biến thiên của f’(x) để có được bảng xét dấu cho .

Bước 3: Dựa vào bảng xét dấu của  vừa có để kết luận về sự đồng biến, nghịch biến của hàm số g(x).

2. Ví dụ minh hoạ.

Ví dụ. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Hàm số y = -2018.f(x) đồng biến trên khoảng nào dưới đây?

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

A. ;0.

B. 1;+.

C. 0;+.

D. ;1.

Lời giải

Đặt gx=2018.fx,

ta có: g'x=2018.f'x.

Xét g'x=2018.f'x0

f'x0x1

Vậy hàm số y=2018.fx đồng biến trn khoảng 1;+.

Chọn B.

Dạng 3. Xét sự đồng biến, nghịch biến của hàm hợp.

1. Phương pháp giải.

Bài toán 1: Cho hàm y = f(x) hoặc hàm y = f '(x) xét sự biến thiên của hàm g(x) = f(u(x)).

Phương pháp:

- Tính đạo hàm g'(x)=f'(u(x)).u'(x)

- Xét dấu g'(x) dựa vào dấu của f'(u(x)) và u'(x) theo quy tắc nhân dấu.  Lưu ý khi xét dấu f'(u(x)) dựa vào dấu của f'(x) như sau: Nếu f'(x) không đổi dấu trên D thì f'(u(x)) không đổi dấu khi u(x)D.

Bài toán 2: Cho hàm y = f(x) hoặc y = f '(x) xét sự biến thiên của hàm g(x) = f(u(x))+h(x).

Phương pháp:

- Tính g'(x)=u'(x).f'(u(x))+h'(x)

- Lập bảng xét dấu g'(x) bằng  cách cộng dấu của hai biểu thức u'(x).f'(u(x)) và h'(x).

Bài toán 3: Cho hàm y = f(u(x)) hoặc hàm y = f '(u(x))  xét sự biến thiên của hàm y = f(x).

Phương pháp: Giả sử  ta có: f'(u(x))>0xD. Ta cần giải BPT f'(x)>0

- Đặt  t=u(x)x=v(t)

- Giải bất phương trình:

f'(t)>0f'(u(x))>0xDx=v(t)DtD'

- Vậy f'(x)>0xD'.

2. Ví dụ minh hoạ.

Ví dụ 1. Cho hàm số f(x), bảng xét dấu của f '(x) như sau:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Hàm số f(52x) nghịch biến trên khoảng nào dưới đây?

A. (2;3).

B. (0;2).                    

C. (3;5).

D. (5;+∞).

Lời giải

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Chọn B

Ví dụ 2. Cho hàm số y=fx có đạo hàm trên R và có đồ thị hàm f'x như hình vẽ dưới đây. Hàm số gx=fx2x đồng biến trên khoảng nào?

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

A. 12;1 .

B. 1;2 .                

C. 1;12 .

D. ;1 .

Lời giải

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

(Ta cần xác định một loại dấu của f'x2x)

Bảng xét dấu g'x:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Từ bảng xét dấu ta có hàm số g(x) đồng biến trên khoảng 1;12.

Chọn C.

Lưu ý: Dấu của g'x ở bảng trên có được nhờ nhân dấu của hai biểu thức 2x1 và f'x2x.

Ví dụ 3. Cho hàm số fx có bảng xét dấu của đạo hàm như sau:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Hàm số y=3fx+2x3+3x đồng biến trên khoảng nào dưới đây?

A. 1;+.

B. ;1.          

C. 1;0.

D. 0;2.

Lời giải

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Bảng xét dấu

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Từ bảng xét dấu suy ra trên khoảng 1;0 hàm số đồng biến.

Chọn C.

Ví dụ 4. Cho hàm số y=f(x) có đạo hàm trên R. Hàm số y=f'(3x1) có đồ thị như hình vẽ:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?

A. 2;6 .

B. ;7 . 

C. ;6 .

D. ;13 .

Lời giải

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Chọn B.

Ví dụ 5.  Cho hàm số y=f(x) có f'2x+72=3x212x+9. Hàm số y=f(x) nghịch biến trên khoảng nào sau đây.

A. 14;94 .

B. 94;+ .  

C. 52;32 .

D. ;52 .

Lời giải

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Vậy hàm số f(x) nghịch biến trên khoảng 52;32

Chọn C.

Phần II. Các bài toán có chứa tham số.

Dạng 4. Tìm tham số m để hàm số đồng biến (nghịch biến) tập xác định (khoảng xác định) của hàm số.

1. Phương pháp giải.

Bài toán 1. Tìm tham số m để hàm số y=ax3+bx2+cx+d đơn điệu trên

Bước 1: Tập xác định: D=R

Bước 2: Đạo hàm y'=3ax2+2bx+c

Bước 3: Điều kiện đơn điệu (khi a0).

- Hàm số đồng biến trên y'0,

xay'>0Δy'0m.

- Hàm số nghịch biến trên y'0,

xay'<0Δy'0m.

Lưu ý: Nếu hàm bậc ba y=ax3+bx2+cx+d  có a chứa tham số thì ta cần xét a=0 để kiểm tra xem hàm số có đơn điệu trên R hay không.

- Không xét bài toán tìm m để hàm số y=ax4+bx2+c  đơn điệu trên R do phương trình y’=0 luôn có ít nhất 1 nghiệm là x = 0.

Bài toán 2. Tìm tham số m để hàm số y=ax+bcx+d (c0,   adbc0) đơn điệu trên mỗi khoảng xác định của nó.

Phương pháp:

Bước 1: Tập xác định: D=\dc

Bước 2:  Đạo hàm: y'=adbc(cx+d)2

Bước 3: Điều kiện đơn điệu:

- Hàm số đồng biến trên mỗi khoảng xác định

y'>0,xD

adbc>0m

- Hàm số nghịch biến trên mỗi khoảng xác định

y'<0,xD

adbc<0m

Lưu ý: Nếu hàm số y=ax+bcx+d có c chứa tham số thì ta nên xét c=0 để kiểm tra xem hàm số có đơn điệu trên từng khoảng xác định của nó hay không.

Mở rộng:

Tìm tham số để hàm số y=ax2+bx+cdx+e(ad0) đơn điệu trên mỗi khoảng xác định của nó.

Phương pháp:

Bước 1: Tập xác định: D=\ed

Bước 2: Đạo hàm: y'=Ax2+Bx+C(dx+e)2 với

A=a   b0   d0B=2a   c0   e,C=b   cd   e

Bước 3: Điều kiện đơn điệu

- Hàm số đồng biến trên mỗi khoảng xác định y'0,xD

Ax2+Bx+C0,x

A>0Δ0m

- Hàm số nghịch biến trên mỗi khoảng xác định y'<0,xD

Ax2+Bx+C0,  x

A<0Δ0m

Lưu ý: Nếu gặp câu hỏi tương tự dành cho hàm số y=ax2+bx+cdx2+ex+f  thì ta cũng làm theo phương pháp nêu trên.

- Đối với bài toán 2, đạo hàm chỉ lớn hơn 0 hoặc nhỏ hơn 0 chứ không được cho y'0,  y'0. Lý do là nếu ta cho y'=0 thì sẽ có vô số giá trị x thỏa mãn (mà định nghĩa nêu rõ y'=0 tại một số hữu hạn điểm x mà thôi).

Tìm tham số m để hàm số lượng giác đơn điệu trên R

Cách 1.

- Tính đạo hàm y'=f'x, cho y'=f'x0 nếu đề bài yêu cầu hàm số đồng biến trên  (Ngược lại: y'=f'x0 nếu đề bài yêu cầu hàm số nghịch biến trên R)

- Cô lập m để có được dạng gmhx

(hoặc gm>hx;gmhx;gm<hx).

- Tìm Max-Min cho hàm số hx trên R (Hoặc lập bảng biến thiên cho hàm hx).

- Dựa vào giá trị Max-Min hoặc bảng biến thiên để kết luận về điều kiện của m.

Cách 2. Đặt t=sinx (hoặc t=cosx) với điều kiện t1;1.

Bất phương trình:

asinx+b0,xat+b0t=sinx,t1;1a.1+b0a.1+b0

Hoàn toàn tương tự:

acosx+b<0,xat+b<0t=cosx,t1;1a.1+b<0a.1+b<0

2. Ví dụ minh hoạ.

Ví dụ 1. Cho hàm số y=x3mx2+4m+9x+5 với m là tham số. Có bao nhiêu giá trị nguyên của  để hàm số nghịch biến trên khoảng ;+?

A. 4

B. 6

C. 7

D. 5

Lời giải

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Chọn C.

Sai lầm hay gặp là Để hàm số đã cho nghịch biến trên khoảng ;+ thì y'<0,x. Khi đó ra giải ra 9<m<3 và chọn D.

Ví dụ 2. Hàm số y=x2+m+1x12x (m là tham số) nghịch biến trên mỗi khoảng xác định của nó khi các giá trị của m là:

A. m1.

B. m=1.

C. m52.

D. 1<m<1.

Lời giải

Tập xác định: D=\2

Đạo hàm:

y'=x2+4x+2m+12x2=gx2x2

Hàm số nghịch biến trên mỗi khoảng xác định của nó khi và chỉ khi y'0,  xD

(Dấu chỉ xảy ra tại hữu hạn điểm trên )

gx=x2+4x+2m+10, xD

Do a = -1 < 0, nên g(x) ≤ 0

Δ'g041.2m+102m+50m52

Chọn C.

Dạng 5. Tìm m để hàm số đồng biến (nghịch biến) trên một khoảng xác định K cho trước.

Bài toán 1. Tìm tham số m để hàm số bậc ba, bậc bốn,… đơn điệu trên tập K cho trước (với  là khoảng, đoạn hoặc nửa khoảng).

Phương pháp:

Bước 1: Tìm đạo hàm của hàm y'=f'(x).

Bước 2: Điều kiện đơn điệu:

- Hàm số đồng biến trên Ky'0,  xK

- Hàm số nghịch biến trên Ky'0,  xK

Bước 3:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

*Tìm tham số để hàm số y=ax3+bx2+cx+d  đơn điệu trên một khoảng có độ dài p.

Phương pháp:

Bước 1: Đạo hàm y'=3ax2+2bx+c

Bước 2:

- Hàm số đồng biến trên khoảng có độ dài py' có hai nghiệm phân biệt x1,  x2 thỏa mãn x1x2=pa<0Δy'ay'=p.

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

- Hàm số nghịch biến trên khoảng có độ dài py' có hai nghiệm phân biệt x1,  x2 thỏa mãn x1x2=pa>0Δy'ay'=p.

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Lưu ý:

- Dạng này không cần điều kiện a0,  Δ>0  vì điều kiện Δa=p+  đã bao hàm hai ý trên.

-  Điều kiện x1x2=p  có thể được xử lý theo hai cách chính:

+ Một là sử dụng định lí Vi-ét: x1x2=p

x122x1x2+x22=p2x1+x224x1x2p2=0ba24cap2=0

+ Hai là tự xây dựng công thức:  

x1=b+Δ2a,x2=bΔ2a

x1x2=b+Δ+b+Δ2a=Δa=2Δ'a

Các câu hỏi: “đồng biến (nghịch biến) trên khoảng có độ dài >p,  p,  <p,  p  ta cũng sẽ làm tương tự.

Bài toán 2: Tìm tham số m để hàm số nhất biến y=ax+bcx+d   c0,  adbc0  đơn điệu trên một khoảng K cho trước (với  là khoảng, đoạn hoặc nửa khoảng).

Phương pháp:

Bước 1: Tập xác định: D=\dc

Bước 2: Đạo hàm y'=adbc(cx+d)2

Bước 3: Điều kiện đơn điệu:

- Hàm số đồng biến trên K

y'>0xdc,  xKadbc>0dcKm

- Hàm số nghịch biến trên K

Ky'<0xdc,  xKadbc<0dcKm

Tìm tham số m để hàm số y=a.ux+bc.ux+d   c0,  adbc0  đơn điệu trên khoảng K cho trước.

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Bài toán 3. Bài toán tham số đối với những dạng hàm số khác.

Phương pháp:

Bước 1: Tìm đạo hàm của hàm y'=f'(x).

Bước 2: Điều kiện đơn điệu:

- Hàm số đồng biến trên Ky'0,  xK

- Hàm số nghịch biến trên Ky'0,  xK

Bước 3:

- Biến đổi theo dạng mg(x),  xK (hoặc mg(x),  xK).

- Lập bảng biến thiên của hàm số g(x) với mọi xK.

Dựa vào bảng biến thiên và kết luận điều kiện cho tham số

- Giả sử hàm g(x) tồn tại Max-Min trên R. Ta có:

mgx,  xmMaxgxm>gx,  xm>Maxgxmgx,  xmMingxm<gx,  xm<Mingx

- Nếu hàm g(x) không tồn tại Max-Min trên R, tuy nhiên thông qua bảng biến thiên ta tìm được điều kiện bị chặn: M1<gx<M2, khi đó:

mgx,  xmM2m>gx,  xmM2mgx,  xmM1m<gx,  xmM1

2. Ví dụ minh hoạ.

Ví dụ 1.  (Đề tốt nghiệp THPT 2020 mã đề 103) Tập hợp tất cả các giá trị thực của tham số m để hàm số y=x+2x+m đồng biến trên khoảng (;5)

A. (2;5] .

B. [2;5)

C. (2;+)

D. (2;5)

Lời giải

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Ví dụ 2. (Đề Minh họa lần 1, 2017, BGD) Tìm tất cả các giá trị của m để hàm số y=tanx2tanxm đồng biến trên 0;π4

A. m<2

B. m0  hoặc 1m<2

C. 1m<2

D. m0 .

Lời giải

Điều kiện: tanxm0,  x0;π4

mtanx,  x0;π4

mtanx,  tanx0;1m0;1m0m1(*)

Tính đạo hàm nhanh bằng phương pháp sau:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Ta có y'>0,  x0;π4

m+2>0m<2 (**)

Từ (*) và (**) suy ra m01m<2

Chọn B.

Ví dụ 3. (Đề tốt nghiệp 2020-Đợt 2 Mã đề 103) Tập hợp tất cả các giá trị thực của tham số để hàm số y=x33x2+2mx đồng biến trên khoảng 2;+ là:

A. ;1

B. ;2

C. ;1

D. .;2

Lời giải

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Từ bảng biến thiên ta thấy m2. Vậy m;2

Chọn D.

Phần III. Bài toán ứng dụng sự đồng biến, nghịch biến của hàm số.

1. Phương pháp giải.

Bài toán 1: Đánh giá các bất đẳng thức f(x)0,xa;b hoặc f(x)gx,xa;b

Phương pháp

Chuyển vế để đưa bất đẳng thức về dạng f(x)0,  xa;b.

Bước 1: Tính đạo hàm f'(x) và chứng minh đạo hàm chỉ mang một dấu (âm hoặc dương).

Bước 2: Vận dụng tính chất đơn điệu:

- Nếu hàm f(x) đồng biến trên a;b thì xa;b0f(a)f(x)f(b).

- Ngược lại nếu hàm f(x) nghịch biến trên a;b thì , f(a)f(x)f(b)0.

Bài toán 2: Giải phương trình dạng f(u)=f(v)  với u,  vD .

Phương pháp:

Bước 1: Nhận diện hàm đặc trưng để đưa phương trình về dạng f(u)=f(v) với u,  vDxa;b

Bước 2: Chứng minh hàm đặc trưng đơn điệu trên D (f'(t) luôn âm hoặc luôn dương trên D).

Bước 3: Giải phương trình: f(u)=f(v)u=v

Bài toán 3: Giải phương trình dạng f(x)=g(x)  có nghiệm duy nhất x=x0

Phương pháp:

Bước 1: Tìm một nghiệm x=x0 của phương trình (bằng tính nhẩm hoặc nhân lượng liên hợp v.v…).

Bước 2: Tính đạo hàm f'(x) và chứng minh đạo hàm chỉ mang một dấu (tức là hàm f(x) đơn điệu trên miền xác định).

Bước 3: Chứng minh hàm số g(x) là hàm hằng hoặc đơn điệu (ngược lại hàm f(x)). Từ đó khẳng định phương trình đã cho có nghiệm duy nhất x=x0

2. Ví dụ minh hoạ.

Ví dụ 1. Cho hàm số y=fx có f'x<0x. Tìm tất cả các giá trị thực của x để f1x>f2.

A. 0;12

B. ;012;+

C. ;12

D. ;00;12

Lời giải

Ta có: f'x<0,x nên hàm số y = f(x) nghịch biến trên R.

Do đó:

f1x>f21x<212xx<0x;012;+

Chọn D.

Ví dụ 2. (Đề tốt nghiệp 2020-Đợt 2 Mã đề 103) Cho hàm số f(x) có bảng biến thiên như sau:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số  để phương trình 3fx24x=m có ít nhất ba nghiệm thực phân biệt thuộc khoảng 0;+?

A. 15

B. 12.

C. 14.

D. 13.

Lời giải

Đặt u=x24x (1)

Ta có BBT sau:

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Ví dụ 3. Khi giải phương trình: 4x3+x(x+1)2x+1=0, ta tìm được nghiệm có dạng a+bba, với ab là các số nguyên. Hãy tính a2+b2.

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Lời giải

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

Tất tần tật về sự đồng biến và nghịch biến của hàm số – Toán lớp 12 (ảnh 1)

5. Bài tập vận dụng

Bài 1: Xét tính đồng biến và nghịch biến của hàm số sau y = y= -x3 + 6x2 - 9x + 4

Hàm số đã cho xác định trên D=R.

Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).

Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)

Bài 2: Xét tính đồng biến và nghịch biến của hàm số sau y = (3 - 2x)/(x + 7)

Hàm số đã cho xác định và liên tục trên: D = R\{-7}.

Tính y' = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải > 0,∀x ∈ D = R\{-7}.

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên, hàm số đã cho luôn nghịch biến trên: (-∞; -7)và(-7; +∞).

Bài 3: Xét tính đồng biến và nghịch biến của hàm số sau y = x4 + 4x + 6

Tập xác định: D = R.

Tính: y' = 4x3 + 4. Cho y' = 0 ⇔ 4x3 + 4 = 0 ⇔ x = -1.

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên, hàm số đồng biến trên khoảng (-1; +∞).

Hàm số nghịch biến trên khoảng (-∞; -1)

Bài 4: Xét tính đồng biến và nghịch biến của hàm số sau y = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hàm số đã cho xác định khi: x2 - x + 3 > 0 đúng ∀x ∈ R.

Hàm số đã cho xác định trên D = R

Ta có: y' = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Cho y' = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải = 0 ⇔-5x + 8 = 0 ⇔ x = 8/5.

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên, hàm số đã cho đồng biến trên(-∞; 8/5).

Hàm số nghịch biến trên khoảng (8/5; +∞)

Bài 5: Xét tính đồng biến và nghịch biến của hàm số sau y = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hàm số đã cho xác định trên: D = R\{-2}.

Ta có: y' = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải ,∀x ∈ D.

Cho y' = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải = 0 ⇔ -x2 - 4x + 5 = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên, hàm số nghịch biến trên: (-∞; -5) và (1; +∞)

Hàm số đồng biến trên các khoảng (-5; -2) và (-2; 1)

Bài 6: Xét tính đồng biến và nghịch biến của hàm số sau y = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hàm số đã cho xác định trên D = R.

Ta có: y' = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Cho y' = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải = 0 ⇔ -36x2 + 24x - 3 = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên, hàm số đã cho đồng biến trên (-∞; 1/6) và (1/6; +∞)

Hàm số nghịch biến trên khoảng (1/6; 1/2)

Bài 7: Xét tính đồng biến và nghịch biến của hàm số sau y = |x2 - 2x - 3|

Ta có: y = |x2 - 2x - 3| = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

TXĐ: D = R.

Tìm y' = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hàm số không có đạo hàm tại x= -1 và x = 3.

Ta lại có: Trên khoảng (-1; 3): y' = 0 ⇔ x = 1.

Trên khoảng (-∞; -1): y' < 0. Trên khoảng (3; +∞): .y' > 0

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiDựa vào bảng biến thiên, hàm số đồng biến trong các khoảng (-1; 1) và (3; +∞).

   Hàm số nghịch biến trên các khoảng (-∞; -1) và (1; 3)

Bài 8: Xét tính đồng biến và nghịch biến của hàm số sau y = 2sinx + cos2x,x ∈ [0; π]

Hàm số đã cho xác định trên đoạn [0; π].

Ta có: y' = 2cosx - 2sin2x = 2cosx - 4cosx.sinx = 2cosx(1 - 2sinx),x ∈ [0; π].

Trên đoạn[0; π]: y' = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiDựa vào bảng biến thiên, hàm số đồng biến trên các khoảng (0; π/6) và (π/2; 5π/6)

Hàm số nghịch biến trên các khoảng (π/6; π/2); (5π/6; π)

Đánh giá

0

0 đánh giá