Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập bộ tài liệu về Hoán vị, chỉnh hợp và tổ hợp Toán lớp 10, tài liệugồm có Lý thuyết Hoán vị, chỉnh hợp và tổ hợp, công thức tính và bài tập vận dụng giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.
Hoán vị , chỉnh hợp, tổ hợp là gì? Công thức tính và bài tập vận dụng
A. LÝ THUYẾT CƠ BẢN
1. Hoán vị
Cho phần tử khác nhau (). Mỗi cách sắp thứ tự của phần tử đã cho, mà trong đó mỗi phần tử có mặt đúng một lần, được gọi là một hoán vị của phần tử đó.
Định lí
Số các hoán vị của phần tử khác nhau đã cho () được kí hiệu là và bằng:
Ví dụ:
Tính số cách xếp bạn học sinh thành một hàng dọc.
Hướng dẫn:
Mỗi cách xếp bạn học sinh thành một hàng dọc là một hoán vị của phần tử.
Vậy số cách xếp bạn học sinh thành một hàng dọc là .
2. Chỉnh hợp
Định nghĩa
Cho tập hợp gồm phần tử .
Kết quả của việc lấy phần tử khác nhau từ phần tử của tập hợp và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
Chú ý
Mỗi hoán vị của n phần tử khác nhau đã cho chính là một chỉnh hợp chập của phần tử đó.
Định lí
Số chỉnh hợp chập của phần tử khác nhau đã cho được kí hiệu là và bằng
Với quy ước .
Ví dụ:
Có bao nhiêu số tự nhiên gồm chữ số khác nhau được lập thành từ các chữ số ?
Hướng dẫn:
Mỗi số tự nhiên gồm chữ số khác nhau được lập bằng cách lấy chữ số từ tập và xếp chúng theo một thứ tự nhất định.
Mỗi số như vậy được coi là một chỉnh hợp chập của phần tử.
Vậy số các số cần tìm là số.
3. Tổ hợp
Định nghĩa
Cho phần tử khác nhau (). Mỗi tập con gồm phần tử khác nhau (không phân biệt thứ tự) của tập hợp phần tử đã cho () được gọi là một tổ hợp chập của phần tử đã cho (với quy ước tổ hợp chập của n phần tử bất kỳ là tập rỗng).
Định lí
Số các tổ hợp chập của phần tử khác nhau đã cho được kí hiệu là và bằng
= , ()
Ví dụ:
Một bàn học sinh có nam và nữ. Có bao nhiêu cách chọn ra bạn để làm trực nhật?
Hướng dẫn:
Mỗi cách chọn ra bạn để làm trực nhật là một tổ hợp chập của phần tử.
Vậy số cách chọn là: (cách)
Định lí
Với mọi , ta có:
a)
b) = .
4. Tính số các hoán vị, chỉnh hợp, tổ hợp bằng máy tính cầm tay
Với một số máy tính cầm tay, ta có thể tính toán nhanh các số các hoán vị, chỉnh hợp và tổ hợp.
Ví dụ:
• Để tính ta ấn liên tiếp các phím:
Ta nhận được kết quả là 3 628 800.
• Để tính ta ấn liên tiếp các phím:
Ta nhận được kết quả là 360.
• Để tính ta ấn liên tiếp các phím:
Ta nhận được kết quả là 70.
B. BÀI TẬP
Câu 1: Một tổ có 4 học sinh nam và 5 học sinh nữ
a) Hỏi có bao nhiêu cách xếp học sinh trong tổ thành một hàng dọc?
A. 4!.5! B. 4!+5!
C. 9! D. A49.A59
b) Hỏi có bao nhiêu cách xếp học sinh trong tổ thành hàng dọc sao cho học sinh nam và nữ đúng xen kẽ nhau?
A. 4!.5! B. 4!+5!
C. 9! D. A49.A59
Câu 2:
a) Từ tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}, lập được bao nhiêu số có bốn chữ số khác nhau?
A. 4! B. A94
C. 9A93 D. C94
b) Có bao nhiêu số có bốn chữ số khác nhau?
A. 4! B. 9A93
C. 9C93 D. Một đáp án khác
Câu 3: Trong mặt phẳng có 18 điểm phân biệt trong đó không có ba điểm nào thẳng hàng
a) Số tam giác mà các đỉnh của nó thuộc tập hợp các điểm đã cho là:
A. A183 B. C183
C. 6 D. 18!/3
b) Số vecto có điểm đầu và điểm cuối thuộc tập điểm đã cho là:
A. A182 B. C182
C. 6 D. 18!/2
Câu 4: Có 5 bì thư khác nhau và có 8 con tem khác nhau. Chọn từ đó ra 3 bì thư và 3 con tem sau đó dán 3 con tem lên 3 bì thư đã chọn. Biết rằng một bì thư chỉ dán 1 con tem. Hỏi có bao nhiêu cách dán?
A. A53.A83 B. 3!A53 A83
C. C53.C83 D. 3!C53.C83
Câu 5: Giải phương trình Ax3+Cxx-3=14x (x là ẩn số)
A. x= 5 và x= -2 B. x = 5
C. x= -2 D. vô nghiệm
Câu 6: Sắp xếp năm bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Số cách sắp xếp sao cho bạn Chi luôn ngồi chính giữa là
A. 24
B. 120
C. 60
D. 16
Câu 7: Có 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách sắp xếp các viên bi trên thành một dãy sao cho các viên bi cùng màu ở cạnh nhau?
A. 345600
B. 725760
C.103680
D.518400
Câu 8: Có bao nhiêu cách xếp khác nhau cho 4 người ngồi vào 6 chỗ trên một bàn dài?
A.15
B. 720
C. 30
D. 360
Câu 9: Trong một ban chấp hành đoàn gồm 7 người, cần chọn ra 3 người vào ban thường vụ. Nếu cần chọn ban thường vụ gồm ba chức vụ bí thư, phó bí thư, ủy viên thường vụ thì có bao nhiêu cách chọn?
A. 210
B. 200
C. 180
D. 150
Câu 10: Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh để tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn như trên?
A.9880
B. 59280
C. 2300
D. 455
Câu 11: Có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)?
A. 10
B. 30
C. 6
D. 60
Câu 12: Trong mặt phẳng, cho 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
A. 15
B. 20
C. 60
D. Một số khác.