Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập tài liệu Chuyên đề HSG: Tìm GTLN, GTNN của biểu thức môn Toán lớp 9, tài liệu bao gồm 26 trang, giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kỳ thi môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.
Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:
A. Các kiến thức thường sử dụng là
+ Bất đẳng thức Côsi: “Cho hai số không âm a, b; ta có bất đẳng thức:
Dấu “=” xảy ra khi và chỉ khi a = b”.
+
+ Sử dụng “bình phương” để tìm giá trị lớn nhất, giá trị nhỏ nhất.
+ Phương pháp “tìm miền giá trị” (cách 2 ví dụ 1 dạng 2).
CÁC DẠNG TOÁN VÀ CÁCH GIẢI
Dạng 1: CÁC BÀI TOÁN MÀ BIỂU THỨC CHO LÀ MỘT ĐA THỨC
Bài toán 1: Tìm GTNN của các biểu thức:
a. A =
b. B = (x-1)(x+2)(x+3)(x+6)
c.
Giải:
a. A =
Min A = 10 khi x=-1/2
b.B = (x-1)(x+2)(x+3)(x+6) = (x-1)(x+6)(x+2)(x+3)
= (x2 + 5x – 6)(x2 + 5x + 6) = (x2 + 5x)2 – 36 -36
Min B = -36 khi x = 0 hoặc x = -5
c.
=> Min C=2 khi x=1; y=2
Bài toán 6: Cho 0 ≤ a, b, c ≤ 1. Tìm GTLN và GTNN của biểu thức:
P = a + b + c – ab – bc – ca.
Giải:
Ta có: P = a + b + c – ab – bc – ca
= (a – ab) + (b - bc) + (c – ca)
= a(1 – b) + b(1 – c) + c(1 – a) 0 (vì )
Dấu “=” có thể xảy ra chẳng hạn: a = b = c = 0
Vậy GTNN của P = 0
Theo giả thiết ta có: 1 – a 0; 1 – b 0; 1 – c 0;
(1-a)(1-b)(1-c) = 1 + ab + bc + ca – a – b – c – abc 0
P = a + b + c – ab – bc – ac
Dấu “=” có thể xảy ra chẳng hạn: a = 1; b = 0; c tùy ý
Vậy GTLN của P = 1.
B. Các bài tập tìm giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức
Phương pháp: Có hai cách để giải bài toán này: Cách 1: Dựa vào tính chất |x| ≥ 0. Ta biến đổi biểu thức A đã cho về dạng A ≥ a (với a là số đã biết) để suy ra giá trị nhỏ nhất của A là a hoặc biến đổi về dạng A ≤ b (với b là số đã biết) từ đó suy ra giá trị lớn nhất của A là b. Cách 2: Dựa vào biểu thức chứa hai hạng tử là hai biểu thức trong dấu giá trị tuyệt đối. Ta sẽ sử dụng tính chất: ∀x, y ∈ ta có: |
Ví dụ 1: Tìm giá trị nhỏ nhất của các biểu thức sau:
a. A = (3x - 1)2 - 4|3x - 1| + 5
b. B = |x - 2| + |x - 3|
Lời giải:
a, A = (3x - 1)2 - 4|3x - 1| + 5
Đặt
Do đó, min A = 1⇔ y = 2.
b,
Ví dụ 2: Tìm giá trị nhỏ nhất của C = |x2 - x + 1| + |x2 - x - 2|
Hướng dẫn giải
Ta có: C = |x2 - x + 1| + |x2 - x - 2|
≥ |x2 - x + 1 + 2 + x - x2| = 3
MinC = 3 ⇔ (x2 - x + 1)(2 + x - x2) ≥ 0
⇔ (x + 1)(x - 2) ≤ 0 ⇔ -1 ≤ x ≤ 2
Ví dụ 3: Tìm giá trị nhỏ nhất của T = |x - 1| + |x - 2| + |x - 3| + |x - 4|
Hướng dẫn giải
Ta có |x - 1| + |x - 4| ≥ |x - 1 + 4 - x| = 3 (1)
|x - 2| + |x - 3| ≥ |x - 2 +3 - x| = 1 (2)
Vậy T ≥ 1 + 3 = 4
Từ (1) suy ra dấu bằng xảy ra khi 1 ≤ x ≤ 4
Từ (2) suy ra dấu bằng xảy ra khi 2 ≤ x ≤ 3
Vậy T có giá trị nhỏ nhất bằng 4 khi 2 ≤ x ≤ 3
II. Dạng 2: Tam thức bậc hai
Phương pháp: Đối với dạng tam thức bậc hai ta đưa biểu thức đã cho về dạng bình phương một tổng (hoặc hiệu) cộng (hoặc trừ) đi một số tự do. Tổng quát:
|
Ví dụ 1: Tìm giá trị lớn nhất của biểu thức B = 6 - 8x - x2
Lời giải
Ta có: B = 6 - 8x - x2
B = - (x2 + 8x) + 6
B = - (x2 + 8x + 16) + 6 + 16
B = - (x + 4)2 + 22
Vì (x + 4)2 ≥ 0 với mọi x
⇒ - (x + 4)2 ≤ 0 với mọi x
⇒ - (x + 4)2 + 22 ≤ 22 với mọi x
⇒ B ≤ 22 với mọi x
Vậy giá trị lớn nhất của biểu thức B là 22
Ví dụ 2. Tìm giá trị nhỏ nhất của biểu thức C = 4x2 + 8x + 10
Lời giải
C = 4x2 + 8x + 10
= (2x)2 + 2 . 2x . 2 + 4 + 6
= (2x + 2)2 + 6
Với mọi x ta có: (2x + 2)2 ≥ 0
⇒ (2x + 2)2 + 6 ≥ 6
⇒ C ≥ 6
Do đó, giá trị nhỏ nhất của biểu thức C là 6.
Ví dụ 3:
a, Tìm giá trị nhỏ nhất của A = 2x2 - 8x + 1
b, Tìm giá trị lớn nhất của B = -5x2 - 4x + 1
Lời giải:
a, A = 2(x2 - 4x + 4) - 7
= 2(x - 2)2 - 7 ≥ -7
Vậy min A = - 7 khi và chỉ khi x = 2
b, Ta có:
Vậy max
Ví dụ 4: Cho tam thức bậc hai P(x) = ax2 + bx + c
a, Tìm min P nếu a > 0
b, Tìm max P nếu a < 0
Lời giải:
Ta có
Đặt . Do nên:
a, Nếu a > 0 thì do đó P ≥ k ⇒ min P = k
b, Nếu a < 0 thì do đó P ≤ k ⇒ max P = k ⇒
Phương pháp: Đưa đa thức về dạng tổng các bình phương. |
Ví dụ 1: Tìm giá trị nhỏ nhất của các đa thức sau:
a. A = x(x - 3)(x - 4)(x - 7)
b. B = 2x2 + y2 - 2xy - 2x + 3
c. C = x2 + xy + y2 - 3x - 3
Lời giải:
a, A = x(x - 3)(x - 4)(x - 7)
= (x2 - 7x)(x2 - 7x + 12)
Đặt y = x2 - 7x + 6 thì A = (y - 6)(y + 6) = y2 - 36 ≥ - 36
b, B = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
Dấu "=" xảy ra
c, C = x2 + xy + y2 - 3x - 3
= x2 - 2x + y2 - 2y + xy - x - y
Ta có
Đặt a = x - 1; b = y - 1 thì
Vậy Min(C + 3) = 0 hay min C = - 3⇔ a = b = 0 ⇔ x = y = 1
C. Bài tập vận dụng
Câu 1. Tìm giá trị lớn nhất của biểu thức B = 10 - x2
A. 0 | B. 10 |
C. -10 |
D. 9 |
Đáp án: B
Ta có: x2 ≥ 0 ⇒ 10 - x2 ≤ 10
Vậy min B = 10.
Câu 2. Tìm giá trị lớn nhất của biểu thức A = 4x - 2x2
A. 0 | B. 1 | C. 4 | D. 2 |
Đáp án: D
Ta có: A = 4x - 2x2 = - 2(x2 - 2x)
= - 2(x2 - 2x + 1) + 2
= - 2(x - 1)2 + 2
Vì (x - 1)2 ≥ 0 với mọi x
⇒ - 2(x - 1)2 + 2 ≤ 2
Do đó, giá trị lớn nhất của biểu thức A là 2.
Câu 3 . Tìm giá trị lớn nhất của biểu thức C = 4x + 3 - x2
A. 7 | B. 4 | C. 3 |
D. -1 |
Đáp án: A
Ta có: C = 4x + 3 - x2
= - (x - 2)2 + 7 ≤ 7
Vì
Do đó, giá trị lớn nhất của C là 7.
Câu 4. Tìm giá trị lớn nhất của biểu thức D = - x2 + 6x - 11
A. - 11 |
B. 6 | C. - 2 | D. 9 |
Đáp án: C
D = - x2 + 6x - 11 = - (x2 - 6x) - 11
= - (x2 - 6x + 9) + 9 - 11
= - (x - 3)2 - 2
Vì
Giá trị lớn nhất của biểu thức D là – 2
Câu 5. Tìm giá trị lớn nhất của biểu thức E = 4x - x2 + 1
A. 1 |
B. 5 |
C. 3 | D. 6 |
Đáp án: B
Ta có: E = 4x - x2 + 1
= - (x2 - 4x) + 1
= - (x2 - 4x + 4) + 4 + 1
= - (x - 2)2 + 5
Vì - (x - 2)2 ≤ 0 ⇒ - (x - 2)2 + 5 ≤ 5
Do đó, giá trị lớn nhất của biểu thức E là 5.
Câu 6. Tìm giá trị nhỏ nhất của biểu thức A = 2x2 + 8x + 11
A. 3 |
B. 8 |
C. 11 | D. 9 |
Câu 7. Tìm giá trị nhỏ nhất của biểu thức E = x2 - 2x + y2 + 4y + 10
A. 1 |
B. 10 |
C. 5 | D.8 |
Câu 8. Tìm giá trị nhỏ nhất của biểu thức D = 4x2 + y2 + 6y + 20
A. 20 |
B. 11 |
C. 10 | D.16 |
Câu 9. Tìm giá trị nhỏ nhất của biểu thức G = x2 + 5y2 - 4xy - 8y + 28
A. 10 |
B. 8 |
C. 20 | D.15 |
Câu 10. Tìm giá trị nhỏ nhất của phân thức
Lời giải:
Câu 11. Tìm giá trị nhỏ nhất của phân thức
Lời giải:
Lời giải: ĐKXĐ của phân thức x ≠ 1.
Ta có:
Vậy min A = 2 khi và chỉ khi x - 2 = 0 ⇔ x =2
Câu 12. Tìm giá trị nhỏ nhất và giá trị lớn nhất của phân thức
Lời giải:
a, Tìm GTNN
Vậy min A = -1 khi và chỉ khi x - 2 = 0 ⇔ x = 2
b, Tìm GTLN
Vậy max A= 4 khi và chỉ khi 2x + 1= 0⇔ 2x = -1 ⇔ x = -1/2
Câu 13. Tìm giá trị lớn nhất của phân thức
Lời giải:
Câu 14. Tìm giá trị nhỏ nhất của phân thức
Lời giải:
Câu 15. Tìm giá trị nhỏ nhất của phân thức
Lời giải:
Câu 16. Tìm giá trị nhỏ nhất và giá trị lớn nhất của phân thức
Lời giải:
a, Tìm GTNN
Vì x2 + 9 ≥ 9 , (x – 6)2 ≥ 0 với mọi x
⇒ P ≥ - 1
Vậy min P = -1 ⇔ x – 6 = 0 ⇔ x = 6
Tim GTLN
b,Ta có:
Vậy max P =4 ⇔ 2x + 3 = 0 ⇔ x = -3/2
Câu 17. Tìm giá trị nhỏ nhất và giá trị lớn nhất của phân thức
Lời giải:
a, Tìm GTNN
Ta có:
Vậy min D = -1/2 ⇔ x = -2
Tim GTLN
Ta có
Vậy max D = 1 ⇔ x = 1
Câu 18. Tìm giá trị nhỏ nhất của phân thức
Lời giải:
Câu 19. Tìm giá trị lớn nhất của phân thức
Lời giải:
D. Bài tập tự luyện
Bài 1. Tìm giá trị nhỏ nhất của biểu thức: Q = .
Bài 2. Tìm giá trị lớn nhất của biểu thức: Q = .
Bài 3. Tìm giá trị lớn nhất của biểu thức: Q = .
Bài 4. Tìm giá trị nhỏ nhất của biểu thức: Q = .
Bài 5. Tìm giá trị lớn nhất của biểu thức: Q = .
Bài 6. Tìm giá trị nhỏ nhất của biểu thức:
a,
b,
c,
d,
Bài 7. Tìm giá trị lớn nhất của biểu thức:
A = - x2 - y2 + xy + 2x + 2y
Bài 8. Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức dưới đây:
a, A = -x2 + x + 1 | b, B = x2 + 3x + 4 |
c, C = x2 - 11x + 30 | d, D = x2 - 2x + 5 |
e, E = 3x2 - 6x + 4 | f, F = -3x2 - 12x - 25 |
Bài 9. Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức dưới đây:
A = |x - 2004| + |x - 2005|
B = |x - 2| + |x - 9| + 1945
C = -|x - 7| - |y + 13| + 1945
Bài 10. Chứng minh rằng không có giá trị x, y, z thoả mãn:
x2 + 4y2 + z2 - 2x + 8y - 6z + 15 = 0