Bảng công thức tính nguyên hàm và 20 bài tập vận dụng

Tải xuống 1 4.8 K 26

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập tài liệu Bảng công thức tính nguyên hàm đầy đủ, chi tiết và 20 bài tập vận dụng, tài liệu tổng hợp đầy đủ lí thuyết công thức tính nguyên hàm, giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

Bảng công thức tính nguyên hàm đầy đủ, chi tiết và bài tập vận dụng

1. Định nghĩa

    Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.

    Kí hiệu: ∫ f(x)dx = F(x) + C.

Định lí 1:

    1) Nếu F(x) là một nguyên hàm của f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

    2) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.

Do đó F(x) + C; C ∈ R là họ tất cả các nguyên hàm của f(x) trên K.

2. Tính chất của nguyên hàm

    • (∫ f(x)dx)' = f(x) và ∫ f'(x)dx = f(x) + C.

    • Nếu F(x) có đạo hàm thì: ∫d(F(x)) = F(x) + C).

    • ∫ kf(x)dx = k∫ f(x)dx với k là hằng số khác 0.

    • ∫[f(x) ± g(x)]dx = ∫ f(x)dx ± ∫g(x)dx.

3. Sự tồn tại của nguyên hàm

Định lí:

    Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

4. Bảng công thức nguyên hàm

Bảng công thức tính nguyên hàm đầy đủ, chi tiết và bài tập vận dụng (ảnh 3)

Bảng công thức tính nguyên hàm đầy đủ, chi tiết và bài tập vận dụng (ảnh 2) 

Đặc biệt: 0dx=C;dx=x+C.

5. Một số phương pháp tìm nguyên hàm

1. Phương pháp đổi biến

1.1. Đổi biến dạng 1

    a. Định nghĩa.

    Cho hàm số u = u(x) có đạo hàm liên tục trên K và hàm số y = f(u) liên tục sao cho f[u(x)] xác định trên K. Khi đó, nếu F là một nguyên hàm của f, tức là: ∫ f(u)du = F(u) + C thì:

 f[u(x)]u'(x)dx = F[u(x)] + C

    b. Phương pháp giải

    Bước 1: Chọn t = φ(x). Trong đó φ(x) là hàm số mà ta chọn thích hợp.

    Bước 2: Tính vi phân hai vế: dt = φ'(t)dt.

    Bước 3: Biểu thị: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.

    Bước 4: Khi đó: I = ∫ f(x)dx = ∫g(t)dt = G(t) + C.

1.2. Phương pháp đổi biến loại 2

    a. Định nghĩa:

    Cho hàm số f(x) liên tục trên K; x = φ(t) là một hàm số xác định, liên tục trên K và có đạo hàm là φ'(t). Khi đó, ta có:

 f(x)dx = ∫ f[φ(t)].φ'(t)dt

    b. Phương pháp chung

    Bước 1: Chọn x = φ( t), trong đó φ(t) là hàm số mà ta chọn thích hợp.

    Bước 2: Lấy vi phân hai vế: dx = φ'(t)dt.

    Bước 3: Biến đổi: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.

    Bước 4: Khi đó tính: ∫ f(x)dx = ∫g(t)dt = G(t) + C.

    c. Các dấu hiệu đổi biến thường gặp

Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

2. Phương pháp nguyên hàm từng phần

    a. Định lí

    Nếu u(x), v(x) là hai hàm số có đạo hàm liên tục trên K:

u(x).v'(x)dx = u(x).v(x) - ∫v(x).u'(x)dx

    Hay ∫udv = uv - ∫vdu

    (với du = u'(x)dx, dv = v'(x)dx)

    b. Phương pháp chung

    Bước 1: Ta biến đổi tích phân ban đầu về dạng: I = ∫ f(x)dx = ∫ f1(x).f2(x)dx

    Bước 2: Đặt: Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

    Bước 3: Khi đó: ∫u.dv = u.v - ∫v.du

    c. Các dạng thường gặp

    Dạng 1

Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

    Dạng 2

Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

    Dạng 3

Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12

    Bằng phương pháp tương tự ta tính được Bảng công thức nguyên hàm đầy đủ, chi tiết - Toán lớp 12 sau đó thay vào I.

6. Bài tập trắc nghiệm

Bài 1:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt u = ex + 1 ⇒ u' = ex. Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 2: Trong các hàm số sau hàm số nào không phải là một nguyên hàm của f(x) = cosxsinx ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Cách 1.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Cách 2. Sử dụng phương pháp biến đổi số ta có:

Đặt u = cosx thì u’ = -sinx và ∫sinxcosxdx = -∫u.u'dx = -∫udu

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án D.

Bài 3: Tìm I=∫(3x2 - x + 1)exdx

A. I = (3x2 - 7x +8)ex + C    

B. I = (3x2 - 7x)ex + C

C. I = (3x2 - 7x +8) + ex + C    

D. I = (3x2 - 7x + 3)ex + C

Lời giải:

Sử dụng phương pháp tính nguyên hàm từng phần ta có:

Đặt u = 3x2 - x + 1 và dv = exdx ta có du = (6x - 1)dx và v = ex . Do đó:

∫(3x2 - x + 1)exdx = (3x2 - x + 1)ex - ∫(6x - 1)exdx

Đặt u1 = 6x - 1; dv1 = exdx Ta có: du1 = 6dx và v1 = ex .

Do đó ∫(6x - 1)exdx = (6x - 1)ex - 6∫exdx = (6x - 1)e- 6ex + C

Từ đó suy ra

∫(3x2 - x + 1)exdx = (3x2 - x + 1)ex - (6x - 7)ex + C = (3x2 - 7x + 8)ex + C

Vậy chọn đáp án A.

Bài 4:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án C.

Bài 5: Một vật chuyển động với vận tốc v(t) (m/s) có gia tốc

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vận tốc ban đầu của vật là 6m/s. Vận tốc của vật sau 10 giây xấp xỉ bằng

A. 10m/s   

B. 11m/s   

C. 12m/s   

D. 13m/s.

Lời giải:

Vận tốc của vật bằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

với t = 0 ta có v(0)= C = 6 nên phương trình vận tốc của chuyển động là :

v(t) = 3ln(t + 1) + 6 (m/s)

khi đó v(10) = 3ln11 + 6 ≈ 13 (m/s) .

Vậy chọn đáp án D.

Bài 6: Tìm I = ∫cos(4x + 3)dx .

A. I = sin(4x + 2) + C    

B. I = - sin(4x + 3) + C

C. I = (14).sin(4x + 3) + C   

D. I = 4sin(4x + 3) + C

Lời giải:

Đặt u = 4x + 3

⇒ du = 4dx ⇒ dx = 14 du và cos(4x+3)dx được viết thành

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 7: Trong các mệnh đề sau mệnh đề nào nhận giá trị đúng?

A. Hàm số y = 1x có nguyên hàm trên (-∞; +∞).

B. 3x2 là một số nguyên hàm của x3 trên (-∞; +∞).

C. Hàm số y = |x| có nguyên hàm trên (-∞;+∞).

D. 1x + C là họ nguyên hàm của ln⁡x trên (0;+∞).

Lời giải:

Dựa vào định lí: Mọi hàm số liên tục trên K đều có nguyên

hàm trên K. Vì y = |x| liên tục trên R nên có nguyên hàm trên R .

Phương án A sai vì y=1x không xác định tại x=0 ∈ (-∞;+∞).

Phương án B sai vì 3x2 là đạo hàm của x3.

Phương án D sai vì 1x là đạo hàm của ln⁡x trên (0; +∞).

Vậy chọn đáp án C.

Bài 8: Hàm số nào dưới đây không phải là một nguyên hàm của f(x)=2x-sin⁡2x ?

x2 + (12).cos⁡2x    

B. x2 + cos2 x    

C. x2 - sin2x    

D. x2 + cos⁡2x .

Lời giải:

Ta có

   ∫(2x-sin⁡2x)dx=2∫xdx-∫sin⁡2xdx

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

D không phải là nguyên hàm của f(x). Vậy chọn đáp án D.

Bài 9: Tìm nguyên hàm của

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Với x ∈ (0; +∞) ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án C.

Bài 10:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án B.

Ghi chú. Yêu cầu tìm nguyên hàm của một hàm số được hiểu là tìm nguyên hàm trên từng khoảng xác định của nó.

7.Bài tập tự luận

Bài 1: Tìm I = ∫x.e3xdx

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 2: Hàm số nào sau đây không phải là một nguyên hàm của: Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Họ nguyên hàm của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 4: Họ nguyên hàm của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 5: Hàm số nào dưới đây không là nguyên hàm của

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 6: Họ nguyên hàm của hàm số f(x) = (2 tanx + cotx)2 là:

Lời giải:

∫(2tanx + cotx)2dx = ∫(4tan2x + 2tanx.cotx + cot2x)dx

= ∫ [4(tan2x + 1) + (cot2x + 1) - 1]dx

= 4tanx = cotx - x + C

Bài 7: Biết rằng: f'(x) = ax + bx2, f(-1) = 2, f(1) = 4, f'(1) = 0. Giá trị biểu thức ab bằng?

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ điều kiện đã cho ta có phương trình sau:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 8: Cho các hàm số:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

với x > 32. Để F(x) là một nguyên hàm của f(x) thì giá trị của a,b,c lần lượt là:

Lời giải:

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 9: Một đám vi khuẩn tại ngày thứ t có số lượng là N(t). Biết rằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

và lúc đầu đám vi khuẩn có 250000 con. Sau 10 ngày số lượng vi khuẩn xấp xỉ bằng:

Lời giải:

Số lượng vi khuẩn tại ngày thứ t bằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Với t = 0 ta có: N(0) = 250000,

Vậy N(t) = 8000.ln(1 + 0,5t) + 250000

khi đó N(10) ≈ 264334.

Bài 10: Tìm I = ∫sin5xcosxdx .

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Tài liệu có 1 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống