Cho hình bình hành ABCD có A=120o. Tia phân giác của D qua trung điểm I của AB

104

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 95)

Đề bài. Cho hình bình hành ABCD có A^=120. Tia phân giác của D^ qua trung điểm I của AB. Kẻ AH vuông góc với DC. Chứng minh rằng:

a) AB = 2AD.

b) DI = 2AH.

c) AC vuông góc với AD.

Lời giải:

a) Hình bình hành ABCD có BAD^,ADC^ ở vị trí trong cùng phía.

Suy ra ADC^=180 -BAD^=60

Khi đó ADI^=IDC^=ADC^2=30 (do DI là tia phân giác của \(\widehat {ADC}\)).

AID^=IDC^(cặp góc so le trong).

Vì vậy AID^=ADI^

Suy ra tam giác ADI cân tại A.

Do đó AD = AI.

Mà AB = 2AI (I là trung điểm của AB).

Vậy AB = 2AD (điều phải chứng minh).

b) Gọi J là trung điểm của DI.

Tam giác ADI có AJ là đường trung tuyến.

Suy ra AJ vừa là đường phân giác, vừa là đường cao của tam giác ADI.

Khi đó JAI^=DAJ^=DAI^2=60

Xét ∆AJD và ∆DHA, có:

AJD^=DHA^=90

AD là cạnh chung;

DAJ^=ADH^=60

Do đó ∆AJD = ∆DHA (cạnh huyền – góc nhọn).

Suy ra DJ = AH (cặp cạnh tương ứng).

Mà DI = 2DJ (J là trung điểm của DI).

Vậy DI = 2AH (điều phải chứng minh).

c) Ta có BI = BC (12AB)

Suy ra tam giác IBC cân tại B.

IBC^=ADC^=60

Do đó tam giác IBC đều.

Vì vậy IC = IB = IA.

Khi đó tam giác ABC vuông tại C hay ACB^=90

Suy ra DAC^=ACB^=90

Vậy AD AC (điều phải chứng minh).

Đánh giá

0

0 đánh giá