Chứng tỏ rằng A = 1 + 4 + 4^2 + … + 4^2021 chia hết cho 21

124

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 95)

Đề bài. Chứng tỏ rằng A = 1 + 4 + 42 + … + 42021 chia hết cho 21.

Lời giải:

Dựa vào số mũ ta có thể thấy A có tất cả 2022 hạng tử nên chia làm 674 nhóm, mỗi nhóm 3 hạng tử.

A = 1 + 4 + 42 + … + 42021

A = (1 + 4 + 42) + (43 + 44 + 45) + … + (42019 + 42020 + 42021)

A = (1 + 4 + 42) + 43(1 + 4 + 42) + … + 42019(1 + 4 + 42)

A = (1 + 4 + 42)(1 + 43 + … + 42019)

A = 21.(1 + 43 + … + 42019) 21

Vậy A 21.

Đánh giá

0

0 đánh giá