Tìm tất cả các giá trị thực của m để đồ thị hàm số y = x3 − 3mx2 + 4m3 có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 4

90

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 95)

Đề bài. Tìm tất cả các giá trị thực của m để đồ thị hàm số y = x3 − 3mx2 + 4m3 có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 4 với O là gốc tọa độ.

Lời giải:

Ta có: y’ = 3x2 – 6mx = 3x(x – 2m)

Xét y’ = 0 [x=0x=2m[y=4m3y=0[A(0;4m3)OyB(2m; 0) Ox

Do ba điểm O, A, B không thẳng hàng nên 2m ≠ 0 hay m ≠ 0

Ta có: SOAB=12.OA.OB=12|4m3|.|2m|=4m4=4

Suy ra: m = ±1.

Đánh giá

0

0 đánh giá