Chứng minh rằng nếu 5(m + n)^2 + mn ⋮ 441 thì mn ⋮ 441 (m, n ∈ ℤ)

141

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 95)

Đề bài. Chứng minh rằng nếu 5(m + n)2 + mn 441 thì mn 441 (m, n ℤ)

Lời giải:

Từ giả thiết 5(m + n)2 + mn 441

Mà 441 = 212 nên 5(m + n)2 + mn 21

Ta có: 5(m + n)2 + mn = 5m2 + 11mn + 5n2 = 5m2 – 10mn + 5n2 + 21mn 21

Hay 5(m – n)2 + 21mn 21

Mà 21mn 21 nên 5(m –n)2 21

Và (5;21) = 1 nên (m – n)2 21

Suy ra: m – n 21

(m – n)2 441

5(m – n)2 441

Kết hợp với 5(m + n)2 + mn 441

5(m + n)2 + mn - 5(m – n)2 441

Hay 21mn 441, suy ra mn 441

Đánh giá

0

0 đánh giá