Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27

151

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 95)

Đề bài. Cho x,y,z là các số nguyên thỏa mãn: (x - y)(y - z)(z – x) = x + y + z. Chứng minh x + y + z chia hết cho 27.

Lời giải:

- Nếu x,y,z khác số dư khi chia cho 3

+ Nếu có 2 số chia hết cho 3. Số còn lại không chia hết cho 3.

Giả sử đều chia hết cho 3, z không chia hết cho 3

Do x, y đều chia hết cho 3 nên

(x − y)(y − z)(z – x) 3 (Vô lý)

+ Nếu có 1 số chia hết cho 3, 2 số còn lại khác số chia khi chia cho 3, không chia hết cho 3. Tương tự dẫn đến vô lý.

Vậy cả 3 số có cùng số dư khi chia cho 3

(x − y)(y − z)(z − x) 27

x + y + z 27

Đánh giá

0

0 đánh giá