Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC

384

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 95)

Đề bài. Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M là trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H

a) Tứ giác AMBQ là hình gì?

b) Chứng minh CH vuông góc AB

c) Chứng minh tam giác PIQ cân

Lời giải:

a) AM vuông góc AC và BM // AC nên AM BM

Xét AMBQ có: AQB^=MAQ^=MBQ^=90

Nên AMBQ là hình chữ nhật

b, AMBQ là hình chữ nhật nên BQAC mà BQ ∩ AI = H

Suy ra H là trực tâm của tam giác ABC

Do đó: CH AB

c, Tam giác ABI vuông tại I có đường trung tuyến IP nên IP=12AB

Do AMBQ là hình chữ nhật nên PQ=12MQ=12AB

Suy ra IP = PQ

Hay tam giác IPQ cân tại P

Phương pháp giải

Nhận dạng hình chữ nhật theo ba cách sau: 

Cách 1: Chứng minh tứ giác có ba góc vuông. 

Cách 2: Chứng minh tứ giác là một hình thang cân có thêm một góc vuông.

Cách 3: Chứng minh tứ giác là hình bình hành có thêm một góc vuông hoặc hai đường chéo bằng nhau.

Đánh giá

0

0 đánh giá