Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G

106

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 95)

Đề bài. Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G. Chứng minh tam giác ABC cân.

Lời giải:

Vì G là giao điểm của hai đường trung tuyến BN và CM của tam giác ABC nên G là trọng tâm tam giác ABC.

Do đó CG=23CM;BG=23BN

Mà CM = BN (giả thiết) nên CG = BG.

Δ∆BGC có CG = BG nên Δ∆BGC cân tại G.

Suy ra GBC^=GCB^ (tính chất tam giác cân)

Xét Δ∆BMC và Δ∆CNB có:

MC = NB (theo giả thiết),

MCB^=NBC^ (do GBC^=GCB^)

BC là cạnh chung.

Do đó Δ∆BMC = Δ∆CNB (c.g.c).

Suy ra MBC^=NCB^ (hai góc tương ứng).

Tam giác ABC có ABC^=ACB^ nên Δ∆ABC cân tại A.

Vậy nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.

Đánh giá

0

0 đánh giá