Cho tam giác ABC có BC = a, AC = b, Ab = c, đường phân giác AD. 1. Tính độ dài BD, DC

125

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 95)

Đề bài. Cho tam giác ABC có BC = a, AC = b, Ab = c, đường phân giác AD.

1. Tính độ dài BD, DC.

2. Tia phân giác của góc B cắt AD tại I. Tính tỉ số AI : ID.

3. Cho BC bằng trung bình cộng của AB và AC, gọi G là trọng tâm của tam giác ABC. Chứng minh IG song song BC.

Lời giải:

1. Vì AD là phân giác của tam giác ABC nên DBAB=DCAC=DB+DCAB+AC=ab+c

Vậy DB=acb+c;DC=abb+c

2. Vì BI là đường phân giác của tam giác BAD nên: AIID=ABBD=c:acb+c=b+ca

3. Ta có: a=b+c2AIID=2

Mặt khác AGGM=2

Do đó: AGGM=AIID=2

Suy ra: IG // BC.

Đánh giá

0

0 đánh giá