Cho tam giác ABC vuông tại A (AB < AC) đường cao AH 1) Giả sử AB = 9cm, AC = 12cm. Tỉnh độ dài các đoạn thẳng BC, BH và AH

408

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 95)

Đề bài. Cho tam giác ABC vuông tại A (AB < AC) đường cao AH

1) Giả sử AB = 9cm, AC = 12cm. Tỉnh độ dài các đoạn thẳng BC, BH và AH.

2) Gọi M và N lần lượt là chân các đường vuông góc kẻ từ điểm H đến các đường thẳng AB và AC. Chứng minh AM.AB = AN.AC.

3) Đường thẳng đi qua điểm A và song song với đường MN cắt đường thẳng đi qua điểm C và song song với đường AH tại điểm K. Gọi I là giao điểm của AH và BK. Chứng minh ba điểm M, L, N là ba điểm thẳng hàng.

Lời giải:

1) BC=AB2+AC2=15

ΔABC vuông tại A, AH BC nên AH.BC = AB.AC

Suy ra: AH=AB.ACBC=7,2

BH=AB2-AH2=5,4

2) Áp dụng hệ thức lượng trong tam giác vuông AHB, AHC có:

AH2 = AM.AB

AH2 = AN.AC

Suy ra: AM.AB = AN.AC

3) Gọi AB ∩ CK = D

Vì HM AB, HN AC, AB AC

AMHN là hình chữ nhật

MN // AK, KC // AH

KCA^=CAH^=HAN^=ANM^=CAK^

ΔKAC cân tại K

AK = KC

Ta có: AB AC AD AC

KAD^=90-KAC^=90 -KCA^=D^

ΔKAD cân tại K

AK = KD

KD = KC

Ta có: AH // CD (BC)

AIKD=BIBK=IHKC

IA = IH

I là trung điểm AH

Mà AMHN là hình chữ nhật

AH ∩ MN tại trung điểm mỗi đường
I là trung điểm MN

M, I, N thẳng hàng

Đánh giá

0

0 đánh giá