Cho tam giác nhọn ABC có trực tâm H và = 60°. Gọi M, N, P theo thứ tự là chân các đường cao kẻ từ các đỉnh A, B, C

125

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 88)

Đề bài. Cho tam giác nhọn ABC có trực tâm H và = 60°. Gọi M, N, P theo thứ tự là chân các đường cao kẻ từ các đỉnh A, B, C của tam giác ABC và I là trung điểm của BC. Chứng minh rằng tam giác INP đều.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 98) (ảnh 1)

Ta thấy ΔBNC và ΔBPC là hai tam giác vuông có chung cạnh huyền BC nên bốn điểm B, P, N, C nằm trên đường tròn tâm I, đường kính BC.

Khi đó IN = IP ΔINP cân tại I (1)

Tam giác ABN vuông tại N có: ABN^+BAN^=90°

ABN^=90°BAN^=90°60°=30°

Ta có PBN^ là góc nội tiếp và PIN^ là góc ở tâm cùng chắn cung NP

Do đó PIN^=2PBN^=60° (2)

Từ (1) và (2) suy ra ΔINP đều.

Đánh giá

0

0 đánh giá