Cho a, b là các số nguyên dương và q = (a^2+b^2)/(ab+1) là số nguyên

224

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 88)

Đề bài. Cho a, b là các số nguyên dương và q = a2+b2ab+1 là số nguyên. Chứng minh rằng q là số chính phương.

Lời giải:

Giả sử q không phải là số chính phương

Xét tập S(q) = a;b*2q=a2+b2ab+1 . Theo giả thiết S(q) ≠ nên theo nguyên lý cực hạn tồn tại cặp số (A; B) thuộc S(q) sao cho A + B nhỏ nhất.

Giả sử A ≥ B.

Xét phương trình q = x2+B2Bx+1x2Bqx+B2q=0

Rõ ràng A là một nghiệm của phương trình. Giả sử nghiệm còn lại là a.

Theo định lý Vi–ét ta có: A+a=BqAa=B2qa=BqA3a=B2qA4

Đến đây ta có thể đi đến kết luận A ≤ a.

Theo phương trình trên thì A2 ≤ Aa = B2 + 6 (A – B)(A + B) ≤ 6.

Từ đó suy ra (A – B)(A + B) {0;1;2;3;4;5;6} với A ≥ B.

Từ đây kiểm tra được chỉ có cặp A = B = 1 thỏa mãn p là số nguyên dương

Khi đó: p = 8 là số lập phương

Như vậy với mọi số nguyên dương thỏa mãn điều kiện bài toán thì p = 8 (A = B = 1 chỉ là các số nhỏ nhất thỏa mãn tính chất này)

Vậy giả sử ban đầu là sai.

Vậy p là số chính phương.

Đánh giá

0

0 đánh giá