Để thành lập các đội tuyển học sinh giỏi khối 9, nhà trường tổ chức thi chọn các môn Toán, Văn và Ngoại ngữ trên tổng số 111 học sinh

291

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 88)

Đề bài. Để thành lập các đội tuyển học sinh giỏi khối 9, nhà trường tổ chức thi chọn các môn Toán, Văn và Ngoại ngữ trên tổng số 111 học sinh. Kết quả có: 70 học sinh giỏi Toán, 65 học sinh giỏi Văn và 62 học sinh giỏi Ngoại ngữ. Trong đó, có 49 học sinh giỏi cả 2 môn Văn và Toán, 32 học sinh giỏi cả 2 môn Toán và Ngoại ngữ, 34 học sinh giỏi cả 2 môn Văn và Ngoại ngữ. Hãy xác định số học sinh giỏi cả ba môn Văn, Toán và Ngoại ngữ. Biết rằng có 6 học sinh không đạt yêu cầu cả ba môn.

Lời giải:

Gọi x là số học sinh giỏi cả 3 môn Toán, Văn, Ngoại ngữ (x > 0)

Ta có: Số học sinh chỉ giỏi Toán là: 70 – 49 − (32 − x)

Số học sinh chỉ giỏi Văn là: 65 – 49 − (34 − x)

Số học sinh chỉ giỏi Ngoại ngữ là: 62 – 34 − (32 − x)

Do có 6 học sinh không đạt yêu cầu nên:

111 – 6 = 70 – 49 − (32 − x) + 65 – 49 − (34 − x) + 62 – 34 − (32 − x) + 49 + (32 − x) + (34 − x)

82 + x = 105

x = 23

Vậy có 23 học sinh giỏi cả 3 môn.

Đánh giá

0

0 đánh giá