Cho a + b = 1. Tính giá trị của biểu thức M = 2.(a^3 + b^3) - 3.(a^2 + b^2)

13

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 102)

Câu 34: Cho a + b = 1. Tính giá trị của biểu thức M = 2.(a3 + b3) - 3.(a2 + b2)

Phương pháp giải: 

Sử dụng điều kiện a+b=1a + b = 1 để biểu diễn a3+b3a^3 + b^3 và a2+b2a^2 + b^2 theo aa và bb.

Áp dụng các hằng đẳng thức:

a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)

a2+b2=(a+b)22aba^2 + b^2 = (a + b)^2 - 2ab

Thay a+b=1a + b = 1 vào các công thức trên để đơn giản hóa biểu thức.

Lời giải:

M= 2.(a3+b3) - 3.(a2+b2)

=2(a+b)(a2ab+b2)3a23b2

=2(a2ab+b2)3a23b2

=2a22ab+2b23a23b2

=a22abb2

=(a+b)2

=1

Vậy giá trụ của biểu thức M là - 1 tại a + b = 1

Đánh giá

0

0 đánh giá