Cho hình thang vuông ABCD (A = D = 90o) cạnh AB = 1/2CD

144

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 93)

Đề bài. Cho hình thang vuông ABCD (A^=D^=90°) cạnh AB=12CD , gọi H là hình chiếu của D lên AC. M, N là trung điểm của HC và HD.

a) Tứ giác ABMN là hình gì?

b) Chứng minh: BMD^= 90°.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 103) (ảnh 1)

a) Tứ giác ABMN là hình bình hành vì:

+) MN // AB // DC do MN là đường trung bình của tam giác HDC nên MN // DC mà DC // AB

+) Và MN=12CD

Mà AB=12CD nên MN = AB.

b) Để chứng minh BMD^=90° , ta sẽ sử dụng tính chất của hình thang vuông và hình chiếu.

Xét tam giác ADM có: DH vuông góc AM (giả thiết)

MN // DC và DC  AD nên MN  AD

Xét trong tam giác ADM có: MN  AD và DH  AM

Nên N là trực tâm của tam giác ADM

Suy ra: AN  DM

Gọi E là hình chiếu của B lên AC. Ta có:

Tam giác ABC vuông tại B, ta có BE là đường cao, do đó AE = EC.

Tam giác ACD vuông tại D, ta có DH là đường cao, do đó AH = HC.

Vì CD = 2AB và AE = EC, ta có:

AC = AE + EC = 2AB + AB = 3AB.

Lại có: AH = HC

Vậy, ta có AM = MN = ND = DH = AB.

Vậy, ta có AM = MN = ND = DH = AB.

Ta có tứ giác ABMN là tứ giác cân, với AM = MN và BM = ND.

Vì AM = MN = ND = DH = AB, nên ABMN là hình vuông.

Vậy BMD^=90° .

Đánh giá

0

0 đánh giá