Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M là trung điểm của cạnh SD, N thuộc cạnh SA sao cho NS = 2NA

289

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 93)

Đề bài. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M là trung điểm của cạnh SD, N thuộc cạnh SA sao cho NS = 2NA. Gọi I là giao điểm của mp (OMN) và cạnh CD. Tính ICID .

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 103) (ảnh 1)

Chọn CD  (SCD)

Ta có M  (OMN) ∩ (SCD)

Trong (SAC), kẻ ON cắt Sc tại K

Suy ra K  SC  (SCD)

 K  (SCD) ∩ (OMN)

Ta được: MK = (OMN) ∩ (SCD)

Trong (SCD), MK ∩ CD = I

 I = (OMN) ∩ CD

Áp dụng định lý Menelaus đối với SCD cho 3 điểm K, M, I thẳng hàng ta được: ICID.DMMS.SKKC=1ICID.1.SKKC=1ICID=SKKC

Tiếp tục áp dụng định lý Menelaus cho SAC với K, N, O thẳng hàng ta được: KSKC.COOA.NANS=1KSKC.1.12=1KSKC=ICID=12

(CO = AO do O là tâm hình bình hành ABCD).

Đánh giá

0

0 đánh giá