Cho hình chữ nhật ABCD. H là hình chiếu của B trên AC. M; K theo thứ tự là trung điểm của AH và CD

79

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 93)

Đề bài. Cho hình chữ nhật ABCD. H là hình chiếu của B trên AC. M; K theo thứ tự là trung điểm của AH và CD. I và O lần lượt là trung điểm của AB và IC. Chứng minh:

a) MO=12IC .

b) BMK^=90° .

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 103) (ảnh 1)

a) Trong tam giác AHB có MI đường trung bình (vì I và M là trung điểm AB và AH)

nên MI // HB

vậy IM vuông góc AC suy ra tam giác IMC vuông tại M.

Trong tam giác vuông IMC có MO trung tuyến ứng cạnh huyền IC nên MO=12IC

b) Ta có IBCK là hình chữ nhật (vì có IB = CK và IB // CK và có B^=C^=90° )

Nên IC = BK và O là trung điểm BK vì là giao điểm hai đường chéo của hình chữ nhật)

Mà MO=12IC nên MO=12BK .

Xét trong tam giác MKB có MO trung tuyến và MO=12BK

Nên tam giác MKB vuông tại M suy ra BMK^=90° .

Đánh giá

0

0 đánh giá