Cho tam giác ABC vuông tại a đường cao AH. E, F lần lượt hình chiếu H trên AB và AC

286

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 94)

Đề bài. Cho tam giác ABC vuông tại a đường cao AH. E, F lần lượt hình chiếu H trên AB và AC. M là trung điểm BC.

a) Chứng minh AM vuông EF

b) N là trung điểm AB, MN cắt AH tại D. Chứng minh EF // BD.

Lời giải:

a) Xét tứ giác AEHF có góc AEH^=AFH^=FAE^=90

nên AEHF là hình chữ nhật

Suy ra: AFE^=AHE^=ABC^

Ta có: ΔABC vuông tại A

Mà AM là trung tuyến

Nên MA = MB = MC

 ΔMAC cân tại M

 MAC^=MCA^

MAC^+AFE^=ABC^+ACB^=90

 AM vuông góc với EF(1)

b) Xét ΔABC có M, N lần lượt la trung điểm của BC và BA nên MN là đường trung bình

 MN // AC
Hay MN vuông góc với AB

Xét ΔMAB có AH, MN là các đường cao

AH cắt MN tại D

Do đó: D là trực tâm của tam giác MAB

 BD vuông góc với AM (2)

Từ (1) và (2) suy ra BD // EF.

Đánh giá

0

0 đánh giá