Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H)

151

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 94)

Đề bài. Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng:

a) Ba điểm D, A, E thẳng hàng;

b) DE tiếp xúc với đường tròn có đường kính BC.

Lời giải:

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

AB là tia phân giác của góc HAD

Suy ra: DAB^=BAH^

AC là tia phân giác của góc HAE

Suy ra: HAC^=CAE^

Ta có: HAD^+HAE^=2(BAH^+HAC^)=2BAC^=2.90=180

Vậy ba điểm D, A, E thẳng hàng.

b) Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có:

AD  BD; AE  CE

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: MA//BD  MA  DE

Trong tam giác vuông ABC ta có: MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.

Đánh giá

0

0 đánh giá