Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho BH=1/3HC

174

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 94)

Đề bài. Cho tam giác ABC có G là trọng tâm. Gọi H là chân đường cao hạ từ A sao cho BH=13HC. Điểm M di động nằm trên BC sao cho BM =xBC . Tìm x sao cho độ dài của MA +GC đạt giá trị nhỏ nhất.

Lời giải:

Dựng hình bình hành AGCE

Ta có: MA +GC =MA +AE=ME

Kẻ EF  BC (F  BC)

Khi đó |MA +GC|=|ME|=MEEF

Do đó |MA +GC| đạt giá trị nhỏ nhất khi M ≡ F

Gọi P là trung điểm của AC, Q là hình chiếu vuông góc của P lên BC

Vì AGCE là hình bình hành, P là trung điểm của AC

Suy ra P là trung điểm của GE

Do đó GP=PE=12GE

Vì G là trọng tâm tam giác ABC, BP là trung tuyến

Suy ra BG=23BP,GP=13BP

Ta có: BE = BP + PE

Hay BE=BP+13BP=43BP

Xét ∆BPQ và ∆BEF có

FBE^ là góc chung;

BQP^=BFE^=90

Suy ra: ∆BPQ  ∆BEF (g.g)

Do đó BPBE=BQBF=34BF =43BQ

Xét DAHC có P là trung điểm của AC và AH // PQ (vì cùng vuông góc với BC)

Suy ra Q là trung điểm của CH

Hay HQ =12HC; mà BH=13HC

Ta có:

BQ =BH +HQ =13HC +12HC =56HC =56.34BC =58BC

Do đó: BF =43BQ =56BC

Vậy x=56

Đánh giá

0

0 đánh giá