Cho tam giác ABC nhọn. Vẽ AH vuông góc với BC tại H. Chứng minh rằng: AC^2 + BH^2 = AB^2 + CH^2

363

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 6)

Bài 31: Cho tam giác ABC nhọn. Vẽ AH vuông góc với BC tại H. Chứng minh rằng:

AC2 + BH2 = AB2 + CH2.

Lời giải:

Top 1000 Bài tập thường gặp môn Toán có đáp án (phần 6) (ảnh 10)

Vì tam giác ABH vuông tại H nên AB2 = AH2 + BH2 (định lí Pythagore).

Suy ra BH2 = AB2 – AH2.

Vì tam giác ACH vuông tại H nên AC2 = AH2 + HC2 (định lí Pythagore).

Do đó ta có: AC2 + BH2 = (AH2 + HC2) + (AB2 – AH2) = AB2 + HC2 (đpcm).

Đánh giá

0

0 đánh giá