Cho đường tròn (O; R) có đường kính BC. Lấy A thuộc (O) sao cho AB < AC, vẽ đường cao AH của tam giác ABC

2.6 K

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 6)

Bài 11: Cho đường tròn (O; R) có đường kính BC. Lấy A thuộc (O) sao cho AB < AC, vẽ đường cao AH của tam giác ABC.

a) Chứng minh: AH.BC = AB.AC.

b) Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Chứng minh rằng:

MA2 = MB.MC.

c) Kẻ HE vuông góc với AB (E thuộc AB) và HF vuông góc với AC (F thuộc AC). Chứng minh AM \({\rm{//}}\) EF.

Lời giải

Top 1000 Bài tập thường gặp môn Toán có đáp án (phần 6) (ảnh 3)

a)

Xét tam giác ABC có: \(\widehat {BAC} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)

Do đó, tam giác ABC vuông tại A

\({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}AB.AC\)

AH.BC = AB.AC

b)

Xét tam giác MAB và tam giác MCA có:

\(\widehat M\) chung

\(\widehat {MAB} = \widehat {MCA}\) (cùng chắn cung AB)

Do đó, tam giác MAB đồng dạng với tam giác MCA  (g.g)

\( \Rightarrow \frac{{MA}}{{MC}} = \frac{{MB}}{{MA}}\)

MA2 = MB.MC

c)

AM vuông góc với AO (do AM là tiếp tuyến của (O))

Xét tam giác AOC có:

AO = OC

Do đó, tam giác AOC cân tại O

\( \Rightarrow \widehat {OAC} = \widehat {OCA}\)

\(\widehat {AFE} = \widehat {ABC}\)

\(\widehat {OCA} + \widehat {ABC} = 90^\circ \)

\( \Rightarrow \widehat {OAC} + \widehat {AFE} = 90^\circ \)

Do đó, AO vuông góc với EF

Do đó, EF \({\rm{//}}\) AM

Đánh giá

0

0 đánh giá