Tìm hệ số của x^6 trong khai triển (1/x + x^3)^(3n+1) với x ≠ 0, biết n là số nguyên dương thỏa mãn điều kiện

487

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 10)

Câu 6: Tìm hệ số của x6 trong khai triển 1x+x33n+1  với x ≠ 0, biết n là số nguyên dương thỏa mãn điều kiện 3Cn+12+nP2=4An2 .

A. 210                  

B. 252                   

C. 120                   

D. 45

Lời giải:

Đáp án đúng là: A

Điều kiện: n≥ 2

Ta có:

3Cn+12+nP2=4An23.n+1!n1!.2!+2n=4.n!n2!32nn+1+2n=4nn13n+1+4=8n13n+3+4=8n85n=15n=3

Với n = 3, theo khai triển nhị thức Newton ta có:

1x+x310=k=010C10k.1x10k.x3k=k=010C10k.x3kx10k=k=010C10k.x4k10

Hệ số của số hạng chứa x6 ứng với 4k – 10 = 6 ⇒ k = 4

Hệ số cần tìm là: C104=210

Đánh giá

0

0 đánh giá