Chứng minh rằng: 11^(n+2) + 12^(2n+1) chia hết cho 133

137

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 90)

Đề bài. Chứng minh rằng: 11n+2 + 122n+1 chia hết cho 133.

Lời giải:

11n+2 + 122n+1

= 121.11n + 12.144n

= (133 – 12).11n + 12.144n

= 133.11n + 12.(144n – 11n)

Ta thấy: 133.11n chia hết cho 133

144n – 11n chia hết cho (144 – 11) tức chia hết cho 133.

Vậy 133.11n + 12.(144n – 11n) chia hết cho 133 hay 11n+2 + 122n+1 chia hết cho 133.

Đánh giá

0

0 đánh giá