Cho tam giác ABC đều. Trên tia đối của AB lấy điểm D, trên tia đối của BC lấy điểm E

116

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 90)

Đề bài. Cho tam giác ABC đều. Trên tia đối của AB lấy điểm D, trên tia đối của BC lấy điểm E, trên tia đối của CA lấy điểm F sao cho AD = BE = CF. Chứng minh rằng tam giác DEF đều.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 100) (ảnh 1)

Xét tam giác EBD và tam giác FCE có:

EC = DB (vì AB = BC; AD = EB nên EB + BC = AB + AD)

EBD^=FCE^(cùng là 2 góc ngoài của 1 tam giác đều)

EB = FC (giả thiết)

Suy ra: ∆EBD = ∆FCE (c.g.c)

DE = EF (1)

Chứng minh tương tự: ∆EBD = ∆DAF (c.g.c)

DE = FD (2)

Từ (1) và (2): DE = DF = EF

Vậy tam giác DEF đều.

Đánh giá

0

0 đánh giá