Cho tam giác ABC có đường cao AH và BD cắt nhau tại I

238

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 89)

Đề bài. Cho tam giác ABC có đường cao AH và BD cắt nhau tại I.

a) Chứng minh 4 điểm C, D, I, H cùng thuộc 1 đường tròn.

b) Chứng minh 4 điểm A, B, H, D cùng thuộc 1 đường tròn.

c) Tính bán kính đường tròn đi qua 4 điểm C, D, H, I nếu biết CH = 4cm và HAB^ = 30°.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 99) (ảnh 1)

a) Xét tam giác DIC vuông tại D (BD AC)

D, I, C cùng thuộc đường tròn đường kính IC

Xét tam giác HIC vuông tại H (AH BC)

H, I, C cùng thuộc đường tròn đường kính IC

Vậy D, I, C, H cùng thuộc đường tròn đường kính IC

b) Xét tam giác ABH vuông tại H (AH BC)

A, B, H cùng thuộc đường tròn đường kính AB

Xét tam giác ABD vuông tại D (BD AC)

A, B, D cùng thuộc đường tròn đường kính AB

Vậy A, B, H, D cùng thuộc đường tròn đường kính AB

c) Gọi M là giao điểm của CI và AB

Xét tam giác BAC có: AH và BD là đường cao, AH ∩ BD ={I}

Nên I là trực tâm của tam giác BAC

Vậy AM là đường cao thứ 3 của tam giác ABC

Xét ∆ABH và ∆CBM có:

B^ chung

AHB^=CMB^=90°

∆ABH ~ ∆CBM (g.g)

BCM^=HAB^ = 30°

Xét ∆HCI vuông tại H có: cosHCI^=CHCIcos30°=4CICI=833cm

Mà đường tròn đi qua D, I, C, H là đường tròn đường kính IC

Suy ra bán kính đường tròn là 12CI=433cm.

Đánh giá

0

0 đánh giá