Cho đường tròn (O) đường kính AB, lấy điểm C thuộc đường tròn (O), với C không trùng A và B

283

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 89)

Đề bài. Cho đường tròn (O) đường kính AB, lấy điểm C thuộc đường tròn (O), với C không trùng A và B. Gọi I là trung điểm của đoạn AC. Vẽ tiếp tuyến của đường tròn (O) tại tiếp điểm C cắt tia OI tại điểm D.

a) Chứng minh OI song song với BC.

b) Chứng minh DA là tiếp tuyến của đường tròn (O).

c) Vẽ CH vuông góc với AB, H AB và vẽ BK vuông góc với CD, K CD. Chứng minh CK² = HA.HB.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 99) (ảnh 1)

a) Vì DC = DA (tính chất hai tiếp tuyến cắt nhau tại D) và OA = OC = R

Nên OD là trung trực AC nên OD AC

Mà I là trung điểm AC nên I thuộc OD

Lại có: ACB^=90° (góc nội tiếp chắn nửa đường tròn)

AC CB

Suy ra: OD // BC hay OI // BC

b) Xét tam giác OCD và OAD có:

OC = OA = R

OD chung

DA = DC

∆OCD = ∆OAD (c.c.c)

DCO^=DAO^=90°

DA AB và A trên (O) nên DA là tiếp tuyến của (O).

c) OCB^=OBC^

OC // BK (cùng vuông góc với CD)

Nên OCB^=CBK^

Suy ra: OBC^=CBK^

Xét tam giác CHB và CKB có:

H^=K^=90°

Cạnh BC chung

HBC^=OBC^=CBK^

Vậy ∆CHB = ∆CKB (g.c.g)

Suy ra: CK = CH

Áp dụng hệ thức lượng trong tam giác ABC vuông có: CH2 = HA.HB

Mà CH = CK nên CK2 = HA.HB.

Đánh giá

0

0 đánh giá