Từ các chữ số 0, 1, 2, 3, 4, 5, có thể lập bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 9

1.6 K

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Từ các chữ số 0, 1, 2, 3, 4, 5, có thể lập bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 9

Bài 51: Từ các chữ số 0, 1, 2, 3, 4, 5, có thể lập bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 9.

Lời giải: Gọi số cần lập có 3 chữ số đôi một khác nhau có dạng: abc¯.

Theo giả thiết là các số này sẽ chia hết cho 9, do đó ta có: (a+b+c)9.

Khi đó các số a, b, c thuộc các tập số A={0,4,5}, và B={1,3,5}.

+ TH1: Nếu các số abthuộc tập A.

Khi đó chữ số a có: 2 cách chọn; chữ số b có 2 cách và c có 1 cách chọn. Vậy ta có: 2.2.1=4 (số).

+ TH2: Nếu các số abthuộc tập B.

Khi đó a có 3 cách chọn, b có 2 cách và c có 1 cách chọn. Vậy ta có: 3.2.1 = 6 (số).

Áp dụng quy tắc cộng ta có các số tạo thành thỏa mãn bài toán là: 6 + 4 = 10  (số).

Đánh giá

0

0 đánh giá