Cho hàm số y = 3x^4 + 2(m − 2018)x^2 + 2017 với m là tham số thực

442

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Cho hàm số y = 3x4 + 2(m − 2018)x2 + 2017 với m là tham số thực

Bài 6: Cho hàm số y = 3x+ 2(m − 2018)x+ 2017 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có ba điểm cực trị tạo thành tam giác có một góc bằng 120°

A. m = −2018

B. m = −2017

C. m = 2017

D. m = 2018.

Lời giải:

Ta có

y′ = 12x+ 4(m − 2018)x;

y'=0x=03x2=2018m

Để hàm số có ba điểm cực trị  2018 – m > 0  m < 2018

Khi đó, tọa độ các điểm cực trị của đồ thị hàm số là:

A (0; 2017)

B2018m3;m201823+2017C2018m3;m201823+2017

Do tam giác ABC cân tại A nên ycbt ⇔ 3AB= BC2

32018m3+m201849=42018m3

 (m − 2018)= −1  m = 2017 (thỏa mãn)

Đánh giá

0

0 đánh giá