Cho mười chữ số 0, 1, 2, 3, …, 9. Có bao nhiêu số tự nhiên lẻ gồm 6 chữ số

431

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 28)

Câu 31: Cho mười chữ số 0, 1, 2, 3, …, 9. Có bao nhiêu số tự nhiên lẻ gồm 6 chữ số khác nhau, nhỏ hơn 600000 được xây dựng từ 10 số trên.

Lời giải:

Gọi số cần tìm là n=a1a2a3a4a5a6¯ , với 1 ≤ a1 ≤ 5 và a6 lẻ.

Đặt X = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.

Trường hợp 1: a1 lẻ.

Do a1 ∈ {1; 3; 5} nên a1 có 3 cách chọn.

Do a6 ∈ {1; 3; 5; 7; 9} và bỏ đi {a1} nên a6 có 4 cách chọn.

Do a2 ∈ X và bỏ đi {a1, a6} nên a2 có 8 cách chọn.

Do a3 ∈ X và bỏ đi {a1, a6, a2} nên a3 có 7 cách chọn.

Do a4 ∈ X và bỏ đi {a1, a6, a2, a3} nên a4 có 6 cách chọn.

Do a5 ∈ X và bỏ đi {a1, a6, a2, a3, a4} nên a5 có 5 cách chọn.

Áp dụng quy tắc nhân, ta có 3.4.8.7.6.5 = 20160 số tự nhiên thỏa mãn trường hợp 1.

Trường hợp 2: a1 chẵn.

Do a1 ∈ {2; 4} nên a1 có 2 cách chọn.

Do a6 ∈ {1; 3; 5; 7; 9} nên a6 có 5 cách chọn.

Do a2 ∈ X và bỏ đi {a1, a6} nên a2 có 8 cách chọn.

Do a3 ∈ X và bỏ đi {a1, a6, a2} nên a3 có 7 cách chọn.

Do a4 ∈ X và bỏ đi {a1, a6, a2, a3} nên a4 có 6 cách chọn.

Do a5 ∈ X và bỏ đi {a1, a6, a2, a3, a4} nên a5 có 5 cách chọn.

Áp dụng quy tắc nhân, ta có 2.5.8.7.6.5 = 16800 số tự nhiên thỏa mãn trường hợp 2.

Vậy theo quy tắc cộng, ta có tất cả 20160 + 16800 = 36960 số tự nhiên thỏa mãn yêu cầu bài toán.

Đánh giá

0

0 đánh giá