Cho đường thẳng (d): y = 2x + m và parabol (P): y = x^2

520

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 28)

Câu 3: Cho đường thẳng (d): y = 2x + m và parabol (P): y = x2. Tìm m để (d) cắt (P) tại hai điểm nằm về hai phía của trục tung.

Lời giải:

Phương trình hoành độ giao điểm của (d) và (P): 2x + m = x2.

⇔ x2 – 2x – m = 0   (1)

Theo Viet: P=x1x2=ca=m1=m .

Ta có (d) cắt (P) tại hai điểm nằm về hai phía của trục tung.

⇔ Phương trình (1) có 2 nghiệm trái dấu.

⇔ P < 0.

⇔ –m < 0.

⇔ m > 0.

Vậy m > 0 thỏa mãn yêu cầu bài toán.

Đánh giá

0

0 đánh giá