Cho hình chóp S.ABCD có đáy là hình bình hành. Các điểm I, J lần lượt là trọng tâm tam giác

728

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 28)

Câu 14: Cho hình chóp S.ABCD có đáy là hình bình hành. Các điểm I, J lần lượt là trọng tâm tam giác SAB, SAD. Gọi M là trung điểm của CD. Tìm giao điểm E của SD và mặt phẳng IJM.

Lời giải:

Tài liệu VietJack

Gọi P, Q lần lượt là trung điểm của AB, AD.

Khi đó PQ là đường trung bình của tam giác ABD nên PQ // BD.

Do I, J lần lượt là trọng tâm tam giác SAB, SAD nên SISP=23=SJSQ .

Do đó IJ // PQ, suy ra IJ // BD

Có IJ // BD, IJ ⊂ (IJM), BD ⊂ (ABCD)

 giao tuyến của (IJM) và (ABCD) là đường thẳng qua M và song song với BD.

Đường thẳng này cắt AD tại N.

Khi đó mp(IJM) chính là mp (IJNM), mp(SAD) chính là mp(SAN)

Trong mp(SAN), JN cắt SD tại E.

Ta có: JN ∩ SD = {E}; JN ⊂ (IJM)

Khi đó E là giao điểm của SD và (IJM).

Đánh giá

0

0 đánh giá