Cho (d): y = mx – 2 và (P): y = –x^2

329

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 28)

Câu 2: Cho (d): y = mx – 2 và (P): y = –x2.

a) Chứng minh rằng (d) luôn cắt (P) tại hai điểm nằm về hai phía của trục tung với mọi giá trị của m.

b) Tìm m sao cho y1 + y2 = –8.y1.y2.

Lời giải:

a) Phương trình hoành độ giao điểm của (d) và (P): mx – 2 = –x2.

⇔ x2 + mx – 2 = 0   (1)

Theo Viet: S=x1+x2=ba=m1=m .

                   P=x1x2=ca=21=2<0.

Suy ra phương trình (1) luôn có 2 nghiệm trái dấu.

Vậy (d) luôn cắt (P) tại hai điểm nằm về hai phía của trục tung với mọi giá trị của m.

b) Ta có y1 = mx1 – 2; y2 = mx2 – 2.

Theo đề, ta có y1 + y2 = –8.y1.y2.

⇔ mx1 – 2 + mx2 – 2 = –8(mx1 – 2)(mx2 – 2).

⇔ m(x1 + x2) – 4 = –8(m2x1x2 – 2mx1 – 2mx2 + 4).

⇔ m.(–m) – 4 = –8[m2.(–2) – 2m(x1 + x2) + 4].

⇔ –m2 – 4 = –8[–2m2 – 2m.(–m) + 4].

⇔ –m2 – 4 = –8(–2m2 + 2m2 + 4).

⇔ –m2 – 4 = –32.

⇔ m2 – 28 = 0.

m=±27.

Vậy m=±27  thỏa mãn yêu cầu bài toán.

Đánh giá

0

0 đánh giá