Cho hai đường tròn (O; R) và (O'; R') (R > R') tiếp xúc ngoài nhau tại A. Qua A kẻ hai cát tuyến BD và CE (B, C ∈ (O'))

276

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 92)

Đề bài. Cho hai đường tròn (O; R) và (O'; R') (R > R') tiếp xúc ngoài nhau tại A. Qua A kẻ hai cát tuyến BD và CE (B, C (O')); D, E (O)). Chứng minh: ABC^=ADE^.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 102) (ảnh 1)

Xét tam giác O'AC có O'A = O'C = R' nên tam giác O'AC cân tại O'

Suy ra: CO'A^=180°2O'AC^

Tương tự: tam giác OAE cân tại O nên: EOA^=180°2OAE^

O'AC^,OAE^ là 2 góc đối đỉnh nên O'AC^=OAE^

Suy ra: CO'A^=EOA^

Xét tam giác O'CA và OAE có:

OA'OA=OC'OC=R'R

CO'A^=EOA^

∆O'AC ∆OAE (c.g.c)

Suy ra: AOE^=AO'C^

Mà: AOE^=2ADE^(vì AOE^ là góc ở tâm, chắn cung AE, ADE^=12AE)

AO'C^=2ABC^(vì AO'C^ là góc ở tâm, chắn cung AC, ABC^=12AC)

Suy ra: ABC^=ADE^.

Đánh giá

0

0 đánh giá