Cho các số thực a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng a^5 + b^5 + c^5 chia hết cho 5

106

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 92)

Đề bài. Cho các số thực a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng a5 + b5 + c5 chia hết cho 5.

Lời giải:

a5 – a = a(a4 – 1) = a(a2 – 1)(a2 + 1)

= a(a2 – 1)(a2 – 4 + 5)

= a(a2 – 1)(a2 – 4) + 5a(a2 – 1)

= a(a + 1)(a – 1)(a + 2)(a – 2) + 5a(a2 – 1) chia hết cho 5.

Vì a – 2, a – 1, a, a + 1, a + 2 là 5 số nguyên liên tiếp nên có một số chia hết cho 5

a(a + 1)(a – 1)(a + 2)(a – 2) chia hết cho 5

Mặt khác : 5a(a2 – 1) chia hết cho 5

Tương tự có b5 – b chia hết cho 5, c5 – c chia hết cho 5.

Mà a + b + c = 0

Do đó a5 + b5 + c5 = (a5 – a) + (b5 – b) + (c5 – c) chia hết cho 5

Đánh giá

0

0 đánh giá