Cho hàm số: y=m/3*x3-(m-1)*x2+3(m-2)*x+1 để hàm số đạt cực đại x1, x2 thỏa mãn x1 + 2x2 = 1 thì giá trị của m bằng

4.8 K

Tailieumoi.vn biên soạn và giới thiệu bộ câu hỏi Toán gồm các kiến thức lý thuyết và thực hành, giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 16)

Câu 24: Cho hàm số: y=m3x3(m1)x2+3(m2)x+1 để hàm số đạt cực đại x1, x2 thỏa mãn x1 + 2x2 = 1 thì giá trị của m bằng?

Lời giải:

Ta có: y' = mx2 – 2(m – 1)x + 3(m – 2) (m ≠ 0)

Để hàm số có cực đại tại x1 và cực tiểu tại x2 thì phương tình

y' = mx2 – 2(m – 1)x + 3(m – 2)  = 0 có 2 nghiệm phân biệt.

 = (m – 1)2 – 3m(m – 2) = −2m2 + 4m + 1 > 0

162<m<1+62 (1)

Khi đó áp dụng định lý Vi−ét, ta có:

x1+x2=2(m1)m  (2)x1x2=3(m2)m  (3)

Mặt khác theo bài cho ta có: x1 + 2x2 = 1 (4)

Nếu 2x1 + x2 = 0 (5)

Từ (4) và (5) x1=13;x2=23 .

Thay vào (2) ta có: 2m1m=13m=65

Thay vào (3) ta có: 3m2m=29m=549

Suy ra 2x1 + x2 ≠ 0

Khi đó nhân hai vế của (4) với 2x1 + x2 ta có:

(x1 + 2x2)(2x1 + x2) = 2x1 + x2

 2(x1 + x2)2 + x1x2 = 2x1 + x2

Thay (2) và (3) vào ta được:

Tài liệu VietJack

Vậy có hai giá trị m thỏa mãn yêu cầu bài toán là: m=23 ; m = 2.

Đánh giá

0

0 đánh giá