Tìm tất cả số nguyên tố sao cho nó vừa là tổng vừa là hiệu của hai số nguyên tố

1.2 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 38)

Câu 25: Tìm tất cả số nguyên tố sao cho nó vừa là tổng vừa là hiệu của hai số nguyên tố.

Lời giải:

Trường hợp 1:  p chẵn 

Vì p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất . 

p không tồn tại

Trường hợp 2:  p lẻ

Giả sử p = m + n ( m,n là số nguyên tố ). Mà p lẻ   trong m và n có 1 lẻ, 1 chẵn

Nếu m là số lẻ, n là số chẵn   n = 2 p = m + 2 m = p – 2 (1)

Tương tự, p = q – r ( q, r là số nguyên tố ).

Vì p là số lẻ   trong q và r có 1 lẻ, 1 chẵn

Xét q chẵn q = 2   p = 2 – r < 0 ( loại ) 

Vậy  q là số lẻ , r là số chẵn   r = 2   p = q – 2   q = p + 2 (2)

Từ (1) , (2) ta thấy  p – 2 ; p ; p + 2 là 3 số nguyên tố lẻ (3) 

+ Nếu p < 5 p – 2 < 3   p – 2 không thể là số nguyên tố lẻ

+ Nếu p = 5 (3) thỏa mãn   p = 5 .

+ Nếu p > 5 p – 2 ; p ; p + 2 đều lớn hơn 3

+ Nếu p – 2 chia 3 dư 1 thì p chia hết cho 3  p không phải số nguyên tố (loại) 

+ Nếu p–2 chia 3 dư 2 thì p + 2 chia hết cho 3 p + 2 ko phải số nguyên tố (loại) 

p chỉ có thể là 5

Vậy p = 5. 

Đánh giá

0

0 đánh giá