Chứng minh rằng với mọi n ∈ ℕ* ta có 11^(n+1) + 12^(2n–1) chia hết cho 133

545

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 38)

Câu 13: Chứng minh rằng với mọi n * ta có 11n+1 + 122n–1 chia hết cho 133.

Lời giải:

Đặt An = 11n+1 + 122n–1

A1 = 112 + 12 = 133 chia hết cho 133

Giả sử Ak = 11k+1 + 122k–1 đã chia hết cho 133

Xét: Ak+1 = 11k+2 + 122k+1

= 11 . 11k+1 + 122 . 122k–1

= 11. 11k+1 + 122k–1 (11 + 133)

= 11 . Ak + 133 . 122k–1

Vì Ak chia hết cho 133 và 133 . 122k–1 chia hết cho 133 nên Ak+1 chia hết cho 133.

Vậy điều giả sử là đúng.

Đánh giá

0

0 đánh giá