Chứng minh rằng A = 7 + 7^2 + 7^3 +.. + 7^100 chia hết cho 50

1.5 K

Tailieumoi.vn biên soạn và giới thiệu các dạng bài tập môn Toán gồm các kiến thức lý thuyết và thực hành, các dạng bài tập thường gặp giúp học sinh ôn tập và bổ sung kiến thức cũng như hoàn thành tốt các bài kiểm tra môn Toán. Mời các bạn đón xem:

Top 1000 Bài tập thường gặp môn Toán có đáp án (Phần 38)

Câu 14: Chứng minh rằng A = 7 + 72 + 73 +.. + 7100 chia hết cho 50.

Lời giải:

Ta có:

A = 7 + 72 + 73 +.. + 7100

A = (7 + 72 + 73 + 74) + (75 + 76 + 77 + 78) + (797 + 798 + 799 + 7100)

A = (7 + 72 + 73 + 74) . (1 + 74 + 78 + … + 796)

Ta thấy 7 + 72 + 73 + 74 = 2800 = 50 . 56 chia hết cho 50

Vì vậy A chia hết cho 50.

Đánh giá

0

0 đánh giá